Cross-ISA Debugging in Meta-circular VMs

VMIL'17, 24 Oct 2017

Christos Kotselidis ~ Andy Nisbet Foivos S. Zakkak Nikos Foutris

MANCHESTER
1824

The University of Manchester

@@@

Except where otherwise noted, this pi is licensed under the Creative Com s Attribution-ShareAlike 4.0 Inte ional License.
Third p: arks and brands the pro of theil e holders

http://creativecommons.org/licenses/by-nc-sa/4.0/

1 Introduction

Meta-circular VMs

m VMs written in the language they are meant to implement

= Meta-circular VMs use their own compilers to build themselves
(create a boot image)

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

1 Introduction

Development challenges

Porting Meta-circular VMs to new Instruction Set Architectures

® No existing compilers for the target ISA
Need to implement at least all the components required to build the boot image

Compiler bugs prevent the VM from starting
Testing of the compiler cannot be performed without the VM running
No sufficient tools (e.g. testing framework) to assist in the above process

F. Zakkak - foivos.zakkak@manchester.ac.uk

Cross-ISA Debugging in Meta-circular VMs

1 Introduction

Development challenges

Porting Meta-circular VMs to new Instruction Set Architectures

® No existing compilers for the target ISA

Need to implement at least all the components required to build the boot image

Compiler bugs prevent the VM from starting

Testing of the compiler cannot be performed without the VM running

No sufficient tools (e.g. testing framework) to assist in the above process

Debugging the boot image

m Exceptions might appear before we can even print and/or trace them

F. Zakkak - foivos.zakkak@manchester.ac.uk

Cross-ISA Debugging in Meta-circular VMs

1 Introduction

Our approach

Porting Meta-circular VMs to new Instruction Set Architectures

Cross-compile unit tests and run using virtualization

Debugging the boot image

Injection of special assembly instructions acting as markers that helps us map the
failing native function (even if inlined) to the corresponding VM method

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

2 Background 4
ik ho

Maxine VM

Meta-circular VM

Originally a Sun and Oracle Labs project,
maintained by the University of Manchester since project kenai shut down
https://github.com/beehive-lab/Maxine-VM

Ported to ARMv7 using the tools presented in this talk

Ongoing porting to ARMv8 using the same tools

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

https://github.com/beehive-lab/Maxine-VM

2 Background 5
—/ﬁ

Maxine VM Outline

Compilation Broker HeapScheme | GC

T1X: Baseline Compiler SemiSpaceHeapScheme
C1X: Optimizing Compiler GenerationalHeapScheme
Graal: Optimizing Compiler

Other Schemes
JDK Integration
Thread_lng LayoutScheme

" MonitorScheme
Native Calls | JNI

Maxine C Code | Substrate

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

2 Background

Maxine's Compilers

T1X Template based compiler, used instead of an interpreter
+ Fast compilation
— Minimal to no optimizations
C1X Optimizing compiler (C1 ported to Java)
+ Optimizing
— Slower Compilation
Graal Optimizing compiler (Alternative or complementary to C1X)

+ Aggressive Optimizations
— Slower Compilation
— Experimental

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

3 QEMU-based Cross-ISA Debugging Toolchain

QEMU-based Cross-ISA Debugging Toolchain

= |nitialization (Create a code buffer, set expected values, etc.)
m Code generation (fill the buffer with the generated code)
m Creation of an executable (assemble, compile, and link)

arm-unknown-eabi-gcc -c -march=armv7-a -g test_armv7.c -o test_armv7.o
arm-unknown-eabi-as -mcpu=cortex-a9 -g startup_armv7.s -o startup_armv7.o
arm-unknown-eabi-1d -T test_armv7.ld test_armv7.o startup_armv7.o -o test.elf
arm-unknown-eabi-objcopy -0 binary test.elf test_armv7.bin

@ fH H P

® Run binary using QEMU and gdb

$ gemu-system-arm -cpu cortex-a9 -M versatilepb -m 128M -nographic -s -S -kernel
test_armv7.bin
$ arm-none-eabi-gdb

® Validate results (compare register values to expected ones)

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

3 QEMU-based Cross-ISA Debugging Toolchain

Supported Kind of tests

® Individual Assembly Instructions
s T1X Compiled Methods
= C1X Compiled Methods

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

3 QEMU-based Cross-ISA Debugging Toolchain 9/19

Benefits

m Ease porting to new ISAs by enabling cross-ISA debugging
m Speedup regression and enhance productivity by:

O testing cross-ISA compilers on more powerful than the target machines
(e.g. x86 vs ARMv7)
O not building the image for unit testing

1 $ time mx image
2 132.67s user 3.60s system 4217 cpu 32.365 total

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

4 Examples 10/19

Examples

Live demo at the end (if fime permits):

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

4 Examples

Unit Test for ARMv7 add Assembly Instruction

public void test_add() throws Exception {
for (int i = 0; i < 10; i++) {
asm.movImm32(ConditionFlag.Always, ARMV7.cpuRegisters[i], expectedValues[i]);
asm.addq (ARMV7.cpuRegisters[i], expectedValues[i]);

expectedValues[i] += expectedValues[i];
testValues[i] = true;

}

generateAndTest (expectedValues, testValues, bitmasks, asm.codeBuffer);

HOWOWWO~NOOIAWNHR

=

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

4 Examples

Unit Test for ARMv7 T1X add Template

public void test_add() throws Exception {
initializeFrameForCompilation();

t1xCompiler.do_iconst (1);
tlxCompiler.do_iconst (2);
tixCompiler.do_iadd();
expected [0] = 3;

generateAndTest (expectedValues);

HOWOWWO~NOOIAWNHR

=

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

4 Examples 13/19

BC_iadd2 Unit Test

1 package jtt.bytecode;

2

3

4

5

6

7

8 public class BC_iadd2 {
9

10 public static int test(byte a, byte b) {
11 return a + b;

12 ¥

13

14 }

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

4 Examples

Unit Test for ARMv7 C1X Compilation

1 public void test_C1X_jtt_BC_iadd2() throws Exception {

2 byte[]l argsOne = {1, 0, 33, 1, -128, 127};

3 byte[] argsTwo = {2, -1, 67, -1, 1, 1};

4 initTests () ;

5 String klassName = getKlassName("jtt.bytecode.BC_iadd");

6 List<TargetMethod> methods = Compiler.compile(new String[] {klassNamel}, "C1X");

7 initializeCodeBuffers(methods, "BC_iadd2.java", "int test(byte, byte)");

8

9 for (int i = 0; i < argsOne.length; i++) {

10 int expectedValue = jtt.bytecode.BC_iadd2.test(argsOne[i], argsTwol[il);

11 String functionPrototype =

12 ARMCodeWriter.preAmble("int", "int, int ", Integer.toString(argsOne[i]) + ","

+ Integer.toString(argsTwol[il));

13 Object[] registerValues = generateObjectsAndTestStubs(functionPrototype,
entryPoint, codeBytes);

14 assert (Integer) registerValues[0] == expectedValue;

15 }

16

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

Limitations

We still can't test the following without booting the VM

® Object allocation
m Garbage collection
® Synchronization

® Inline assembly (compiler stubs, adapters from T1X to C1X, etc.)

As a result, starting the VM on the target ISA is expected to result in a number of
hard faults (e.g. SIGSEGV)

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

6 Tracing Runtime Faults

Tracing Runtime Faults

m Extend C1X and T1X to inject special assembly instructions:
1. that act as markers that we can easily find when going through a gdb backtrace
2. holding a unique, per method, ID
m Create a file, mapping the unique IDs to the corresponding Java methods
= On failure:
1. Run the VM inside gdb
. Print the backtrace

2
3. Look for the closest marker before the failing instruction
4. QObtain the method ID and look it up in the map file

Cross-ISA Debugging in Meta-circular VMs

F. Zakkak - foivos.zakkak@manchester.ac.uk

6 Tracing Runtime Faults

Tracing Runtime Faults Outline

Compiler (C1X | T1X) Method Database
Aasariier 1 clx };l?_method_ﬁsﬁxt
append | offse methox
Parse method Add MefhodIDNodes MethodIDLIRNode 1 0 foo() (parent)
Create foo() IR Graph inIR 1 12 bar() (inlined)
MethodIDNode 2 0
Inlined Call lower foo() assembly
— — movw r8, Oxdead (r8:scratch) | marker
MethodIDNode movt r8, Oxbeef | marker

movw 18, id (bottom 16 bits)
movt 18, id (upper 16 bits)

éénerated assembly of foo()

ss-ISA Debugging in Meta-circular VMs

F. Zakkak - foivos.zakkak@manchester.ac.uk

_@

Pemo Time

0ss-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

8 Conclusions 19/19

Conclusions

m Enable Cross-ISA debugging
m Speedup development

O Unit testing compilers without building the image
0 Unit testing on stronger machines than the potentially weaker target

m Improve bootstrap debugging by injecting special instructions

Cross-ISA Debugging in Meta-circular VMs F. Zakkak - foivos.zakkak@manchester.ac.uk

Thank You!

Cross-ISA Debugging in Meta-circular VMs

VMIL’17, 24 Oct 2017

Christos Kotselidis ~ Andy Nisbet Foivos S. Zakkak Nikos Foutris

MANCHESTER
1824

The University of Manchester

