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Abstract
Extending current Virtual Machine implementations to new
Instruction Set Architectures entails a significant program-
ming and debugging effort. Meta-circular VMs add another
level of complexity towards this aim since they have to com-
pile themselves with the same compiler that is being ex-
tended. Therefore, having low-level debugging tools is of
vital importance in decreasing development time and bugs
introduced.
In this paper we describe our experiences in extending

Maxine VM to the ARMv7 architecture. During that pro-
cess, we developed a QEMU-based toolchain which enables
us to debug a wide range of VM features in an automated
way. The presented toolchain has been integrated with the
JUNIT testing framework of Maxine VM and is capable of
executing from simple assembly instructions to fully JIT
compiled code. Furthermore, it is fully open-sourced and can
be adapted to any other VMs seamlessly. Finally, we describe
a compiler-assisted methodology that helps us identify, at
runtime, faulty methods that generate no stack traces, in an
automatic and fast manner.

CCS Concepts • Software and its engineering → Just-
in-time compilers; Software testing and debugging;

Keywords just-in-time compilation, debug, cross-isa, qemu,
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1 Introduction
Collectively, managed programming languages implemented
on top of managed runtime environments have a large share
in today’s generated source code. Java, in particular, since its
original design has paved into almost every aspect and do-
main of computing. Spanning from desktop, to server and Big
Data applications Java and consequently the Java Virtual Ma-
chine (JVM) [8] has beenwidely used over the years resulting
in a vast and healthy source code base and library APIs. Other
than Java, a number of other programming languages such
as Scala [11], Ruby [9], and Truffle-based DSLs [20], are also
built atop the JVM taking advantage of its advanced Just-In-
Time (JIT) compilation infrastructure, automatic memory
management in the form of Garbage Collection (GC), and
other features that enable highly productive programming.
The main driving force of managed programming lan-

guages is architecture portability adhering to the “write-
once-run-everywhere” dogma. For example, Java uses a two-
tiered compilation process in which the source code is first
compiled to a portable bytecode format before it can be inter-
preted or JIT compiled by the interpreter and the compilers
of the JVM. In order to execute a program across machines
with different instruction set architectures (ISAs), program-
mers do not have to explicitly recompile or port their code.
On the contrary, the Virtual Machine (VM) engineers pro-
vide cross-ISA interoperability by porting the VMs across
different ISAs.
The process of extending a VM to run on a new ISA is a

tedious and time consuming task because of the amount of
work entailed. Modern VMs, usually integrate a number of
compilers, interpreters, and in-line assembly code that all
must work in harmony to achieve correct execution. Porting
a VM to a new ISA typically requires the development and
testing of numerous compiler back-ends for assembly gener-
ation, as well as additional parts that VMs typically utilize.
Typically such VM parts are compiler intrinsics, compiler
stubs, adapters for transitions between code compiled by
different compilers, and others.
In addition to production-quality JVMs, such as Oracle’s

HotSpot [10] and IBM’s J9 [5], a number of research VMs
such as the Maxine VM [18] and Jikes RVM [1] also exist.
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A number of these research VMs, mainly designed for the
Java language, differ from the production-quality ones due
to their “meta-circular” nature. Instead of being developed in
statically compiled languages such as C or C++ they are im-
plemented in the programming language they are designed
to execute; in this case Java. This meta-circular nature al-
lows for easier and faster prototyping of new language fea-
tures, since Java is a higher level language than C and C++.
Additionally it allows for experimentation with alternative
mechanisms on the core of the VM, making meta-circular
VMs suitable for research. However, this meta-circular na-
ture adds another level of complexity when porting the VMs
to a new ISA because they are compiled by the same com-
pilers that need to be ported to that new ISA. Consequently,
VM engineers face difficulties in testing cross-ISA imple-
mentations because any bug introduced during the compiler
implementation will prohibit the VM to execute correctly
and thus test the compiler that is being ported!
In this paper, we describe our experiences in porting the

Maxine VM from the 64-bit x86 to the 32-bit ARMv7 archi-
tecture. In addition to transitioning Maxine VM from 64 to
32 bit execution, we also introduced a new ISA to it. The
aforementioned meta-circular-derived problems of testing
and validating the new compiler back-ends led us to the
development of a complete QEMU-based toolchain that al-
lows us to perform a high-coverage external debugging and
low-level assembly analysis. The presented toolchain has
been integrated in the JUNIT testing framework of Maxine
VM and is capable of executing from simple assembly in-
structions to fully JIT compiled code. Furthermore, it is fully
open-sourced as of Maxine VM v2.11 [6] and can be adapted
to any other VMs seamlessly.
In summary, in this work we make the following contri-

butions:

• We describe our experiences in porting Maxine VM,
the state-of-the-art research VM, from the 64-bit x86
to the 32-bit ARMv7 architecture.

• We introduce a complete QEMU-based toolchain that
enables high-coverage external debugging and low-
level assembly analysis bypassing the problem of “meta-
circularity” when introducing a new ISA.

• We describe a compiler-assisted methodology for iden-
tifying, at runtime, faulty methods that generate no
stack traces, in an automatic and fast manner.

• We provide guidelines of how to use the tool and tech-
niques introduced in tandem with existing tools to
perform end-to-end execution and debugging of se-
lected methods and/or as part of a JUNIT framework.

The rest of the paper is organized as follows: Section 2
shortly describes Maxine VM and its 64 to 32 bit transition.

1https://github.com/beehive-lab/Maxine-VM
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Figure 1. Maxine outline.

Section 3 describes the introduced toolchain and methodolo-
gies along with a number of developer guidelines. Finally,
Section 4 concludes the paper.

2 Background
In this work, we focus on Maxine VM and therefore, from
hereafter, we use Maxine VM terminology which we intro-
duce in this section.

2.1 Maxine VM
Maxine VM [6, 18] is a meta-circular VM, for Java, written
in Java. Initially developed by Sun and Oracle Labs, it is now
maintained as an open source project and has spawned a
number of side projects [4, 7, 14].
Maxine VM follows a modular approach in which the

components that comprise the VM, called schemes, can be
defined during build time. Examples of such schemes, are the
layout scheme defining the object layouts, the heap scheme
defining the garbage collection algorithms, and the reference
scheme defining the type of object referencing. Maxine VM’s
variety of schemes facilitates the experimentation and pro-
totyping of various features. Figure 1 gives an overview of
the modular architecture of Maxine VM and its schemes.

Currently, Maxine VM offers three compilers:

1. T1X:A fast template compiler similar to an interpreter.
T1X is essentially a fast template JIT compiler that
generates less optimal code than other more aggre-
sive optimizing JIT compilers but has low compilation
times; essentially, serving the role of an interpreter
found in other VM implementations.

2. C1X: A JIT optimizing compiler that compiles fre-
quently executed code based on the statistics gathered
by T1X.

3. Graal: An aggressive JIT optimizing compiler, origi-
nated by C1X, that has formed its own project within
Oracle Labs [12]. As of Maxine v2.0, Graal has been
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integrated to Maxine VM and can be used as a replace-
ment or in collaboration with C1X.

The selection of the compiler follows the same logic with
scheme selection. During build time, we choose which opti-
mizing compiler to use (T1X is always enabled by default).

In order to build the Maxine VM, a host Java Development
Kit (JDK) is used to compile its source code into bytecode.
Consequently, the boot image of Maxine VM is generated
with the help of a host JVM. The boot image is an ahead-
of-time compiled binary which contains the necessary code
for booting and initializing the VM. Several sub-components
of Maxine VM such as the locking machinery and GC code
reside inside the bootimage. Upon boostraping Maxine VM,
the bootimage is loaded into memory updating all inter-
bootimage references and through a thin layer of C code,
called the substrate, execution starts.
A critical point of this building process is the fact that

the bootimage generated code is compiled by one of Maxine
VM’s optimizing compilers. That means that in order to
build and execute the Maxine VM, we must ensure that its
compilers, or at least the ones we choose, produce valid code;
otherwise the boot image code will fail to execute correctly.

The problem of meta-circularity The fact that Maxine
VM’s bootimage is ahead-of-time compiled by one of its
runtime compilers, creates a paradox when trying to port
it to a different ISA. Ideally, in order to test the validity
of the generated code for the new ISA, we would like to
run the VM and through its unit testing framework to start
testing individual compiled methods under the new ISA.
However, this is not possible in our case since we can not
boot the VM if we do not ensure that the compilers have
been ported to the new ISA. At the same time, we can not
test the compilers through the VM’s testing framework if
we can not boot the VM. This problem led us to develop an
external QEMU-based toolchain infrastructure that enables
us to circumvent the bootimage generation and test a wide
range of the VM’s features offline. We describe this toolchain
along with additional debugging infrastructure in Section 3.

In theory, we could use another VM to compile ahead-of-
time the bootimage but this would “break” the meta-circular
nature of Maxine VM. Furthermore, additional changes to
the build toolchain of Maxine VM would be required.

2.2 64 to 32 bit Transition
Apart from the challenges of porting Maxine VM to the
new ARM ISA, we also encountered a number of challenges
during the transition from 64 to 32 bit. We discuss below the
two most significant ones.

2.2.1 Object Identification
Typically, Java objects have an associated hashcode which
uniquely identifies them. Hashcodes are 32 bit long and
stored in objects’ headers for fast retrieval. Depending on the

VM implementation, objects have additional fields added in
their data layout that assist in various VM-related functions,
such as synchronization and GC. Furthermore, every VM
implementation has a different number or size of fields in
the object headers.
Maxine VM, uses two additional words for plain objects

and three for arrays. Regarding objects, the two extra words
store the class pointer, the object’s hashcode, and some other
metadata used for locking, threading, etc. Arrays follow a
similar approach with plain objects with the addition of an
extra word that stores their size.

In a 64 bit machine, an object’s hashcode can be stored in
the second word of their header leaving another 32 bits free
for extra metadata storing. Transitioning to a 32 bit machine
however, leaves no space for these extra metadata bits since
the hashcode occupies the entire word.

A potential solution would be to truncate the 32 bit hash-
code to less bits by providing a custom implementation of
the hashcode function. Although this solution would in-
crease aliasing problems, it would not require any additional
changes to the objects’ layouts.
However, this is not possible in the context of a meta-

circular VM, like Maxine VM, since some objects are being
created and stored during boot image generation by the host
JVM. The host JVM being unaware of the custom hashcode
implementation ofMaxine VM,will store the full 32 bit values
in the bootimage leading to miss-identification when those
objects are requested by Maxine VM during runtime. Since
augmenting the host JVM to also use truncated hash codes
is not a vital solution, we opted for adding an additional
word in objects’ headers on 32 bit architectures. This leads
to a 10% extra heap space overhead as showcased by [15].
Reducing the additional space required by object headers
has been previously studied in [2, 16].

2.2.2 Register Allocation
Maxine VM uses a version of the linear register allocation
described in [13]. In fact, it is a Java version of the register
allocator found in the HotSpot JVM [17]. Since Maxine VM
was designed primarily for 64 bit architectures, all the ex-
tensions that would enable efficient register allocation on 32
bit machines were absent. Thus, we implemented the miss-
ing 32 bit register support based on the SPARC version of
the register allocator2.The added functionality allows the
allocation of adjacent registers for long and double values,
as well as the allocation of double registers starting always
from odd numbering, as specifically required by the ARM
architecture.

3 Toolset and Methodologies
In this Section we describe the QEMU-based [3] toolchain
we developed that enables us to debug a wide number of

2http://hg.openjdk.java.net/jdk8/jdk8/hotspot
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features when porting the meta-circular Maxine VM to a
new ISA. Furthermore, we discuss how someone could com-
bine the introduced toolchain with existing tools as well as
additional debugging functionality we added in Maxine VM,
to enable end-to-end bug tracking and debugging during
runtime (from source code down to assembly).

3.1 QEMU-based Toolchain
Figure 2 depicts the outline of our toolchain.

As shown in Figure 2, the existing unit testing framework
of Maxine VM communicates with the MaxineTester class
which is responsible for the whole coordination. In order to
run a unit test the following steps are performed in order:

1. MaxineTester initialization:
When the unit tests are invoked, they initialize (1)
the MaxineTester which resets all internal state and
QEMU output files. This process is performed per unit-
test by placing the initialize call inside every unit
test. This is due to instabilities we observed during
QEMU execution which led to the unit testing frame-
work hanging during nightly regressions. Hence, we
followed a more conservative approach in which the
QEMU is re-initialized during every unit test execu-
tion. After the initialization completes a code buffer
is returned to the unit test (2) which serves as the
placeholder for the generated assembly code.

2. Generating the code of the unit test:
Depending on the nature of the unit test; i.e., simple as-
sembly instruction, T1X or C1X testing, the code buffer
is filled in a different manner. We describe those differ-
ences in Section 3.2. When the code buffer is filled, it is
passed to the MaxineTester for QEMU emulation (3).

3. Composing the binary for QEMU emulation:
After receiving the code to be tested, the MaxineTester
assembles the binary that will be passed to QEMU for
emulation (4). The process of creating the binary file
(test.bin) is as follows:
Initially, we generate the assembly code of two helping
assembly files (asm_startup.s and entry.s) which
are linked together with the binary code of the unit
test. Consequently, the code buffer that contains the
assembly code of the unit test is inlined to a C file
(codebuffer.c) and a function pointer to its first entry
is installed. Finally, the actual test (test.c) that links
together the codebuffer.c and the two assembly files
(asm_startup.s and entry.s) is compiled and the
test.bin binary is formed. The generated test.bin
binary, in essence, contains code that helps running
the binary code injected through the code buffer (i.e. a
main function with a function pointer invocation to
the embedded code of the code buffer).

4. Performing the QEMU emulation:
The next step, after creating the test.bin binary file

that contains our unit test, is the QEMU emulation
(5). In our case, since we port Maxine VM to the ARM
ISA, we simulate a Cortex-A15 processor, as shown
in Figure 2. QEMU will run the binary emulating the
ARM core we defined, and upon completion, it will
dump the register file to an output file defined in the
MaxineTester class.

5. Validating the execution output:
The output of QEMU executing a unit test is the dump
of the register file of the emulated processor. The out-
put register file is validated against the expected values
as set in the unit test definition. Depending on the na-
ture of the unit test, such definitions might be explicit
(e.g. in which register we expect a certain value to be
written) or implicit (e.g. the return value of a C1X com-
piled method which is written in register r0 according
to the ARM calling convention).

The process described above is performed for every unit
test implemented in the unit test framework. In the next
Section we provide some examples regarding the unit test
implementations.

3.2 Implementing a Unit Test
Our QEMU-based testing infrastructure can execute three
kinds of unit tests that can exercise:

1. Individual Assembly Instructions:
This kind of tests regard individual assembly instruc-
tions that mainly exercise the correct instruction en-
coding while adding a new ISA instruction to the as-
sembler back-end.

2. T1X Compiled Methods:
This kind of tests assess the validity of the code gener-
ated by the T1X compiler.

3. C1X Compiled Methods:
Unit tests that exercise C1X compiled code are themost
complicated ones since they necessitate a significant
part of the compilation process to work offline (i.e.
without runtime support).

Note that the described methodology has not been ported
to the Graal compiler since the ARM port supports only the
T1X and C1X compilers. In the following sections we present
one unit test example for each kind of unit test described
above.

3.2.1 Testing Individual Assembly Instructions
Listing 1 shows a simplified version of the unit test for the
add instruction. As shown in the Listing, initially we reset
the array with the expected values of the simulation. Then,
we perform a number of mov instructions that move the
values of the expected values array into the ARM registers
(r0-r9) in ascending order. Consequently, we perform the
additions of the contents of the registers with the values from
the expected array, writing the results back to the registers.
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Figure 2. QEMU based toolchain outline.

Finally, we update the expected array with the values that the
emulation should produce (ri= 2 * expected[i]). After we
append all the instructions to the code buffer, we pass it along
with the expected values array for generation, emulation,
and validation as described in Section 3.

3.2.2 Testing T1X Compiled Methods
Listing 2 shows a simplified version of the unit test for T1X’s
template of the add instruction. As shown, this test differs
from the simpler individual assembly instruction test. Firstly,
we initialize a frame for the T1X template to be tested. The
frame initialization will add in the code buffer all the neces-
sary instructions that form the prologue of a T1X compiled
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Listing 1. Unit test for ARM add assembly instruction.
private static int[] expected =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

public void test_add () throws Exception {

initializeExpectedValues ();

asm.codeBuffer.reset();

for (int i = 0; i < 10; i++) {

asm.movImm32(ConditionFlag.Always ,

ARMV7.cpuRegisters[i], expected[i]);

asm.add(ARMV7.cpuRegisters[i], expected[i]);

expected[i] *= 2;

}

generateAndTest(expected , asm.codeBuffer);

}

Listing 2. Unit test for ARM T1X add template.
public void test_add () throws Exception {

initializeFrameForCompilation ();

t1xCompiler.do_iconst (1);

t1xCompiler.do_iconst (2);

t1xCompiler.do_iadd ();

expected [0] = 3;

int[] registers = generateAndTest(expectedValues);

assert expected [0] == registers [0];

}

template. Consequently, we call twice the do_iconst T1X
template which generates code for pushing onto the stack
the values 1 and 2. Finally, we call the do_iadd T1X tem-
plate which pops two values from the stack and performs
the addition. At the end of the execution of the add template,
register r0 should have the result of the adding the opera-
tors (r0=3). Therefore, the assertion checks if r0 from the
returned register file is equal to the expected value of 3.

3.2.3 Testing C1X Compiled Methods
Listing 4 shows a simplified version of the unit test of the
jtt.bytecode.BC_iadd2method of Listing 3. This test adds
two byte operands and returns an integer result. Our objec-
tive is to compile that method with C1X and call it with all
the combinations of the operand parameters defined in the
test. Consequently, the test will be emulated on the ARM
architecture and its results will be validated against the ex-
pected ones.

As shown in Listing 4, the first step is to initialize two byte
arrays that hold the input operands of the unit test. Then,
we perform a series of initialization stages which essentially
create offline instances of our optimizing compiler (C1X).
The next step is to invoke the C1X compiler to compile our
method by passing a canonical representation of its class
name.

Then, we call the function initializeCodeBuffers that
initializes the code buffer sizes and assigns values to the
following variables: a) entryPoint which holds the offset of
the entry point of the compiled method, and b) codeBytes

Listing 3. BC_iadd2 unit test.
package jtt.bytecode;

/*

* @Harness: java

* @Runs: (1b,2b)=3; (0b,-1b)=-1; (33b,67b)=100; (1b,

-1b)=0;

* @Runs: (-128b,1b)=-127; (127b,1b)=128;

*/

public class BC_iadd2 {

public static int test(byte a, byte b) {

return a + b;

}

}

which holds the binary of the compiled method. After we
generated the code of the compiled method, our next step is
to compose the unit test and pass it to QEMU for emulation
and validation.
To do that, we first need to create a C signature for the

compiled method that corresponds to the Java one since the
assembly code of the compiled method will be injected in
the C test code as described in Section 3.
Finally, we pass to the generateObjectsAndTestStubs

method all the input parameters. This method invokes the
QEMU toolchain and runs the test. The returned values are
asserted against the expected ones to test the validity of the
execution. Again, by following ARM’s calling convention
since the result is an integer returned value, it should reside
on register r0. Therefore, we check registerValues[0]
that maps to r0.

Limitations: TheQEMU-based toolset andmethodology de-
scribed in this section enables us to perform a large coverage
of the newly implemented ISA instructions of Maxine. This
partially, solves the problem of “meta-circularity” described
in Section 2 since we do not have to achieve a functional
bootimage in order to test the developed compilers. However,
this technique does not provide full coverage. Various parts
of the VM such as object allocation, garbage collections, and
locking, that require runtime support can not be tested since
they require a booted VM. Furthermore, inlined assembly
code (i.e. not generated by Maxine’s compilers) can not be
tested. Such code typically relates to compiler stubs, adapters
for transitioning between T1X and C1X code, etc.
In order to test and validate the above, we first need to

obtain a working bootimage on the new ISA architecture.
After achieving a wide coverage of the VM the next step is
trying to boot it. At that stage, we encountered another prob-
lem with respect to “meta-circularity”; the lack of exception
handling during VM bootstrap. The next section describes in
detail this problem as well as the methodology we followed
to track faulty methods at runtime, as well as during the VM
bootstrap.
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Listing 4. Unit test for ARM C1X compilation.
public void test_C1X_jtt_BC_iadd2 () throws Exception {

byte[] argsOne = {1, 0, 33, 1, -128, 127};

byte[] argsTwo = {2, -1, 67, -1, 1, 1};

initTests ();

String klassName = getKlassName("jtt.bytecode.BC_iadd");

List <TargetMethod > methods = Compiler.compile(new String [] {klassName}, "C1X");

initializeCodeBuffers(methods , "BC_iadd2.java", "int test(byte , byte)");

for (int i = 0; i < argsOne.length; i++) {

int expectedValue = jtt.bytecode.BC_iadd2.test(argsOne[i], argsTwo[i]);

String functionPrototype =

ARMCodeWriter.preAmble("int", "int , int ", Integer.toString(argsOne[i]) + "," + Integer.toString(argsTwo[i]));

Object [] registerValues = generateObjectsAndTestStubs(functionPrototype , entryPoint , codeBytes);

assert (Integer) registerValues [0] == expectedValue;

}

}
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Parse method

Create foo( ) IR Graph
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Figure 3. Adding MethodIDs to IR graph and generation of method database during compilation.

3.3 Tracking Faulty Methods at Runtime
When boostraping a meta-circular VM on a new ISA, many
parts of the VM are still untested. Bootstraping the Maxine
VM is a multi-stage process in which various parts of the
VM are sequentially initialized. Since the exception handling
mechanism of Maxine VM is initialized at later stages of the
boot process, we encountered numerous hard segfaults
that generated no exception stack traces. In order to identify
such faultymethods during runtime, we revised the compiler-
assisted methodology shown in Figure 3.
Since most of the times the VM was failing with a hard

SIGSEGV violation, we were running it inside gdb in order
to read the program counter (PC) and retrieve the address of
the faulty instruction. Our next objective was to be able to
map that address to the faulty compiled method in an auto-
mated manner. For that reason, we augmented Maxine VM’s
compilers (both T1X and C1X) to inject, during compilation,
a unique identifier called MethodID.
The MethodIDs always start from a predefined number

and are incremented in a thread-safe manner, using compare-
and-swap instructions, during a method’s compilation. In the
generated code, the MethodID manifests as a pair of movw,
movt instructions to the scratch register following another

pair of movw, movt instructions that serve as a signature
that we can later search for. At the same time, the compiler
records that unique MethodID along with the method signa-
ture in a text file, essentially creating a database that maps
MethodIDs to method signatures.
Upon a crash, we display the instruction sequence back-

wards inside gdb and search for the MethodID signature.
Then, we inquire the MethodID inside the generated text
file and detect the name of the faulty method. In combina-
tion with the tools described in Section 3.4 this methodology
enabled us to efficiently debug the faulty code.
Another approach to discover the faulty methods would

be to check the address of the faulty instructions, through the
PC, against the code cache in order to find the boundaries of
the faulty method. Although this works for the general case,
it fails to detect the inlining boundaries. If a fault takes place
inside a method inlined inside another method, it is crucial
to be able to find the inner faulty method in order to narrow
down the debugging effort. Our technique enables that by
attaching a dedicated node to the IR graph of the compiled
method. During the graph building phase of the compilation
process, and during inlining, a dedicated MethodIDNode is
attached to the IR graph before the inlined code.



VMIL’17, October 24, 2017, Vancouver, Canada Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, and Nikos Foutris

The MethodIDNode consequently gets lowered, similarly
to any other node, until its assembly gets emitted. The emit-
ted assembly appends the movw, movt pair of the MethodID
inside the compiled method. At the same time, the compiled
method database also maintains, per compiled method, the
offsets of the inlined entry points from the beginning of the
parent method. This way, we can approximately discover
any faulty inlined methods inside a parent method during
runtime.

Limitations: The methodology described in this section,
works for the general case with the exception of the inlining
functionality in the context of highly aggressive optimizing
compilers such as Graal. In that case, the faulty instructions
can potentially be hoisted over the inlined method’s marker
and therefore mislead the developer regarding where the
error occurred. Although this scenario can occur in highly
optimized code, we have not encountered any occurrence in
the context of the C1X compiler.

3.3.1 Maxine Inspector
Maxine VM comeswith out-of-the-box debugging functional-
ity provided by the Maxine Inspector [18]. Maxine Inspector
is a powerful tool that allows its users to inspect a program’s
execution in real-time. By executing a program through the
Maxine Inspector, one can monitor different parts of the VM
including the stack(s), heap, registers, etc. Furthermore, one
can step through or over executed instructions while being
able to map assembly instructions back to the source code.
Theoretically, a tool like Maxine Inspector makes the tech-
nique described in this section obsolete. Unfortunately, this
does not hold true for the following three reasons:

1. The Inspector can not trace execution for a large num-
ber of instructions due to instability issues.

2. It has a significant performance penalty slowing down
execution.

3. We need to provide a disassembler for the developed
ARM architecture since it only supports x86.

For the aforementioned reasons, we developed the tech-
niques described in this section. We hope to solve those
issues in the future and constitute the Inspector as our tool
for development and debugging.

3.4 Toolset Ecosystem
So far we explained two complementary approaches that
help developers debug new ISA compiler back-ends and ex-
tensions. Although the original motivation for developing
those tools originated by the “meta-circular” nature of Max-
ine VM, and the challenges that these kind of VMs have, they
can be applied to any other VM implementation.

While the first tool regards offline testing of different kinds
of generated code, the second methodology targets hard
errors originated during runtime. By providing an automated
way to find the origin of the faulty instructions, we can

combine existing tools to track the compilation of a method
from source code down to assembly.
In our experience, the IdealGraphVizualizer [19] and the

c1Visualizer3 tools proved valuable in finding the source of
bugs. While the first tool visualizes the compilation process
from the graph generation phase to the emission of the low-
level IR (LIR), the second tool visualizes the code from LIR
down to the generated assembly. Unfortunately, since we did
not provide an ARM disassembler to c1Vizualizer we could
not output the generated assembly. Luckily, by using the
second technique described in this paper we could overcome
this issue. By identifying the faultymethod, we could compile
it offline and use existing tools to reason about the source of
bugs.

4 Conclusions
In this paper we presented two techniques that assist in de-
bugging Maxine VM while porting it from x86 to the ARM
ISA. The main motivation of the developed tools and tech-
niques was problems related to the meta-circular nature of
Maxine VM. The fact that Maxine VM is compiled by its own
compilers results in the inability to use it as a testing vehicle
for the developed compilers. To solve that issue, we imple-
mented two complementary techniques that, although not
providing full coverage, assist us in identifying and solving
any bugs introduced when porting Maxine VM to a new ISA.
The first technique enables us to perform offline testing

of generated code by using a QEMU-based toolchain. By
running the generated code in emulation mode, we are able
to debug from simple assembly instructions to methods com-
piled by the T1X and C1X compilers. The full automated
toolchain has been integrated with Maxine’s existing JUNIT
functionality providing a wide coverage of features. The
second technique enables the fast identification of faulty
methods at runtime after a hard error. By using the compiler-
assisted identification technique, we automate the process
of finding the method signatures causing the hard faults that
produce no stack trace inside gdb.
The tools and techniques presented in this paper have

been tested on both ARMv7 and AArch64 ISAs and can
be combined with existing tools providing an end-to-end
debugging infrastructure. They are also available publicly
(https://github.com/beehive-lab/Maxine-VM) under the GPL
license as of Maxine VM’s release v2.1 and can be adapted
to other VM implementations.
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