
SCOOP
Language extensions and compiler optimizations for task-based

programming models

Foivos S. Zakkak

University of Crete
School of Sciences and Engineering

Computer Science Department
and

Institute of Computer Science
Foundation for Research and Technology Hellas

24/02/2012

Foivos S. Zakkak SCOOP 1 / 23

Table of Contents

Introduction

SCOOP

Evaluation

Conclusions and Discussion

Foivos S. Zakkak SCOOP 2 / 23

Concurrent programming

Shared Memory

implicit communication

requires synchronization
to avoid concurrency
errors

requires sophisticated
scheduling and data
allocation to reduce
memory traffic (especially
on NUMA)

non deterministic

Message Passing

explicit communication

requires communication
buffer management

requires sophisticated
scheduling and data
allocation to reduce the
number of messages

non deterministic

Foivos S. Zakkak SCOOP 3 / 23

Task-based Programming Models

Task-based Programming Model

High level

Implicit communication
(through shared memory or through the runtime)

Synchronization
explicit in early models (OpenMP, Cilk)
implicit in recent models

We consider a task:

a piece of code that can execute in parallel with other tasks

the data that it will access

Foivos S. Zakkak SCOOP 4 / 23

BDDT

Block-level Dynamic Dependence Analysis for Deterministic
Task-Based Parallelism

Requires memory footprints

Dynamically detects and resolves task dependencies based on
the memory footprints

implicit synchronization

Flexible way to express parallelism

Deterministic

A memory footprint is a description of the memory locations the
task will access (read/write/both)

Foivos S. Zakkak SCOOP 5 / 23

Runtime overheads (running on a single core)

 0
 1
 2
 3
 4
 5
 6
 7

Black-Scholes HPL GMRES SMPSs-FFT Multisort Jacobi SPLASH-FFT

e
xe

cu
ti

o
n
 t

im
e
 (

se
c)

original
BDDT

BDDT incurs an overhead of 7%-41%

Best et al. also report overhead from under 5% to over 40%
in SvS (another task-based runtime)

Ran on Intel Xeon E5520 2.27 GHz 4-core and 12GB main memory.

Foivos S. Zakkak SCOOP 6 / 23

Table of Contents

Introduction

SCOOP

Evaluation

Conclusions and Discussion

Foivos S. Zakkak SCOOP 7 / 23

SCOOP Stack

.h

.h

Resulting
Source Code

Input Source
Code Files

.c
Par

se
r

Par
se

r

(B
uild

 A
ST)

(B
uild

 A
ST)

Code

Code

Gen
er

at
io

n

Gen
er

at
io

n

Static

Static

Analysis

Analysis

(SDAM
)

(SDAM
)

.c.c

.c
.c

.c

.c

.c .c

.c

.h

.h .h

.h

.h

.h

.c

Foivos S. Zakkak SCOOP 8 / 23

SCOOP Syntax

SMPSs-like #pragma directives to define tasks and their
footprints.

We mark task creation at the calling context.
This way:

1 we are able to differentiate when a function is called
sequentially or asynchronously as a parallel task

2 we are able to fix the task footprint for each invocation,
marking its arguments as safe or not

Tiled array accesses through
stride arguments.

Foivos S. Zakkak SCOOP 9 / 23

Argument Independence Inference

SCOOP queries SDAM (Static Dependence Analysis Module) for
independent arguments.

SDAM infers argument independence in three steps.

1 computes aliasing information for all memory locations in the
program

2 computes which tasks can run in parallel

3 checks whether a memory location (through any alias) is
never accessed in parallel by more than one task.

Foivos S. Zakkak SCOOP 10 / 23

Code Generation

Transforms the input program to use BDDT for creating tasks

Disables BDDT’s runtime dependence checks for inferred or
declared independent arguments

Optimizes the interaction with BDDT’s generic library API by
producing custom code

1 No va args
2 Inline code
3 No if statements
4 Scalars are passed by value

Foivos S. Zakkak SCOOP 11 / 23

Code Example

void t1(int ∗arg1, int arg2) {
//function that will be called in parallel
}
void t2(int ∗arg1) {

//function that will be called in parallel
}
int ∗foo(int ∗x, int sz) {

x = (int ∗)malloc(size);
...
return x;
}
int main(void) {

...
res1 = foo(arg1, size);
#pragma scoop start(number of spes)
for (...) {

#pragma scoop task input(a) inout(res1[size])
t1(res1 , a);
}
#pragma scoop wait all
for (...) {

#pragma scoop task input(arg2[size])
t2(arg1);
}
t1(res1 , a);
#pragma scoop finish
...

}

...
int main(void) {

...
res1 = foo(arg1, size);
bddt init (number of spes);
for (...) {

... //create task descriptor and pass to runtime
task descriptor ->arguments[0].addr = res1;
task descriptor ->arguments[0].flag = INOUT;
task descriptor ->arguments[0].size = size ;
task descriptor ->arguments[0].addr = &a;
task descriptor ->arguments[1].flag = INPUT|SAFE;
task descriptor ->arguments[1].size = sizeof(a);
...

}
bddt wait all ();
for (...) {

... //create task descriptor and pass to runtime
task descriptor ->arguments[0].addr = arg1;
task descriptor ->arguments[0].flag = INPUT|SAFE;
task descriptor ->arguments[0].size = size ;
...

}
t1(res1 , a);
bddt shutdown();
...

}

Foivos S. Zakkak SCOOP 12 / 23

Table of Contents

Introduction

SCOOP

Evaluation

Conclusions and Discussion

Foivos S. Zakkak SCOOP 13 / 23

The Benchmarks

Benchmark LOC Tasks
Total Scalar
Args Args

x86 SMP

Black-Scholes 1540 1 8 1
SMPSs-FFT 2147 8 36 25
SPLASH-FFT 2920 4 12 0
GMRES 2652 18 72 20
HPL 2396 11 63 35
Jacobi 1076 1 6 0
Multisort 1118 3 8 4

Cell BE

Cholesky 2195 4 8 0
LU 2819 3 10 3
SAXPY 1675 1 3 1
SGEMV 2159 1 4 1

Foivos S. Zakkak SCOOP 14 / 23

Measurement Methodology

Initialization and I/O are excluded

We ran:
1 a version written using BDDT API
2 a version written using the SCOOP annotations

Foivos S. Zakkak SCOOP 15 / 23

Performance Improvement

Benchmarks
Speedup

Over
BDDT

Inferred
Args

Non scalar
Args

x86
SMP

Black-Scholes 3.26 7 7
SMPSs-FFT 1 0 11
SPLASH-FFT 1.29 7 12
GMRES 1.05 9 52
HPL 1.01 1 28
Jacobi 1 0 6
Multisort 1 0 4

Cell
BE

Cholesky 1 0 8
LU 1.01 3 7
SAXPY 1.02 2 2
SGEMV 1.18 2 3

Average speedup 1.26

Ran on a 24-core computer node of a Cray XE6
2x AMD 2.1 GHz 12-core and 32GB main memory

Foivos S. Zakkak SCOOP 16 / 23

Scalability on x86

 1

 1.5

 2

 2.5

 3

 3.5

1 6 12 18 24

sp
e
e
d
u
p
 o

v
e
r

B
D

D
T

number of cores

Black-Scholes
SMPSs-FFT

SPLASH-FFT
GMRES

HPL
Jacobi

Multisort

Foivos S. Zakkak SCOOP 17 / 23

Exposing Independencies

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

B
D

D
T

S
C

O
O

P
H

A
N

D

Black−Scholes

HPL
GMRES

SMPSs−FFT

Multiso
rt

Jacobi

SPLASH−FFT

instantiation
wait
execution
remaining

Foivos S. Zakkak SCOOP 18 / 23

Table of Contents

Introduction

SCOOP

Evaluation

Conclusions and Discussion

Foivos S. Zakkak SCOOP 19 / 23

Conclusions

SCOOP, with its evaluation, confirm that static analysis along with
compile-time transformations can drastically improve the
performance of task-based programming models.

SCOOP managed to:

1 reduce BDDT’s dependence analysis overhead

2 improve the benchmarks’ scalability

Foivos S. Zakkak SCOOP 20 / 23

Discussion

Our experience taught us that:

There is space for compile time optimizations in task-based
programming models

SCOOP’s design allows easy porting to completely different
architectures

SCOOP’s C extensions make programming a lot easier than
using BDDT’s API

SCOOP could be used also as a tool increasing the
programmer’s productivity. With some extra effort it can:

report possible wrong memory footprints
infer the task memory footprints

Foivos S. Zakkak SCOOP 21 / 23

Future Work

Regions

1 Express complex task footprints
(ie. lists, hashtables)

2 Dynamically allocate or deallocate memory within tasks
(ie. add/remove node)

3 Reduce memory management overhead
(less mallocs due to memory pool)

4 Reduce dependence analysis overhead
(a single dependency check for the whole region)

5 Increase memory locality
(by implementation)

Port to other platforms

SCC/BDDT

Formic/Myrmics

Foivos S. Zakkak SCOOP 22 / 23

Acknowledgements

Advisor:

A. Bilas

Co-advisors:

D. Nikolopoulos

P. Pratikakis

Committee:

E. Markatos

Colleagues:

D. Chasapis

G. Tzenakis

Foivos S. Zakkak SCOOP 23 / 23

