SCOOP

Language extensions and compiler optimizations for task-based
programming models

Foivos S. Zakkak

University of Crete
School of Sciences and Engineering
Computer Science Department
and
Institute of Computer Science
Foundation for Research and Technology Hellas

24/02/2012

Foivos S. Zakkak SCOOP 1/23

@ Introduction

SCOOP

®

(]

Evaluation

Conclusions and Discussion

(]

Concurrent programming

Shared Memory Message Passing

@ implicit communication
e requires synchronization
to avoid concurrency
errors
@ requires sophisticated
scheduling and data
allocation to reduce
memory traffic (especially
on NUMA)

@ non deterministic

@ explicit communication
@ requires communication
buffer management
@ requires sophisticated
scheduling and data
allocation to reduce the
number of messages

@ non deterministic

Foivos S. Zakkak

SCOOP 3/23

Task-based Programming Models

Task-based Programming Model

e High level

o Implicit communication
(through shared memory or through the runtime)
@ Synchronization

o explicit in early models (OpenMP, Cilk)
e implicit in recent models

We consider a task:

@ a piece of code that can execute in parallel with other tasks

@ the data that it will access

N,

Foivos S. Zakkak SCOOP 4/23

BDDT

Block-level Dynamic Dependence Analysis for Deterministic

Task-Based Parallelism

@ Requires memory footprints

@ Dynamically detects and resolves task dependencies based on
the memory footprints

o implicit synchronization
o Flexible way to express parallelism

@ Deterministic

A memory footprint is a description of the memory locations the
task will access (read/write/both)

Foivos S. Zakkak SCOOP 5/23

Runtime overheads (running on a single core)

original
BDDT

—/

execution time (sec)
O NWMUIO

1

lil1a

Black-Scholes HPL

GMRES SMPSs-FFT Multisort Jacobi SPLASH-FFT

@ BDDT incurs an overhead of 7%-41%

@ Best et al. also report overhead from under 5% to over 40%
in SvS (another task-based runtime)

Ran on Intel Xeon E5520 2.27 GHz 4-core and 12GB main memory.

Foivos S. Zakkak SCOOP 6/23

Introduction

®

e SCOOP

Evaluation

(]

Conclusions and Discussion

(]

SCOOP Stack

Input Source Resulting
Code Files Source Code

Foivos S. Zakkak SCOOP 8/23

SCOOP Syntax

@ SMPSs-like #pragma directives to define tasks and their

footprints.

@ We mark task creation at the calling context.

This way:

@ we are able to differentiate when a function is called
sequentially or asynchronously as a parallel task
@ we are able to fix the task footprint for each invocation,

marking its arguments as safe or not

@ Tiled array accesses through
stride arguments.

Foivos S. Zakkak

SCOOP

9/23

Argument Independence Inference

SCOOP queries SDAM (Static Dependence Analysis Module) for
independent arguments.

SDAM infers argument independence in three steps.

@ computes aliasing information for all memory locations in the
program

@ computes which tasks can run in parallel

© checks whether a memory location (through any alias) is
never accessed in parallel by more than one task.

Foivos S. Zakkak SCOOP 10/23

Code Generation

@ Transforms the input program to use BDDT for creating tasks

@ Disables BDDT's runtime dependence checks for inferred or
declared independent arguments
@ Optimizes the interaction with BDDT's generic library API by
producing custom code
@ No va_args
@ Inline code
© No if statements
© Scalars are passed by value

Foivos S. Zakkak SCOOP 11/23

void tl(int *argl, int arg2) {

//function that will be called in parallel int main(void) {
void t2(int =argl) { resl = foo(argl, size);
//function that will be called in parallel bddt_init (number_of_spes);

for (...) {
int sfoo(int *x, int sz) { create task descriptor and pass to runtime

x = (int *)malloc(size);

return x;
int main(void) {
resl = foo(argl, size);

#£pragma scoop start(number_of_spes) }
bddt_wait-all ();

for (...) {
#tpragma scoop task input(a) inout(res1[size]) for (...) {
tl(resl, a); create task descriptor and pass to runtime
}
##pragma scoop wait all
for (...) { /
#£pragma scoop task input(arg2[size])
t2(argl);

}

} tl(resl, a);
tl(resl, a); —» bddt_shutdown();
#pragma scoop finish

}

SCOOP 12/23

Introduction

®

SCOOP

®

@ Evaluation

Conclusions and Discussion

(]

The Benchmarks

Benchmark LOC | Tasks Total | Scalar

Args Args

Black-Scholes | 1540 1 8 1
SMPSs-FFT 2147 8 36 25
SPLASH-FFT | 2920 4 12 0

x86 SMP | GMRES 2652 18 72 20
HPL 2396 11 63 5

Jacobi 1076 1 6 0

Multisort 1118 3 8 4

Cholesky 2195 4 8 0

LU 2819 3 10 3

Cell BE | s pxpy 1675 1 3 1
SGEMV 2159 1 4 1

Foivos S. Zakkak

SCOOP

14 /23

Measurement Methodology

e Initialization and I/O are excluded
o We ran:

@ a version written using BDDT API
@ a version written using the SCOOP annotations

Foivos S. Zakkak SCOOP 15/23

Performance Improvement

Speedup Inferred | Non scalar
Benchmarks Over Args Args
BDDT

Black-Scholes 3.26 7 7
SMPSs-FFT 1 0 11
«86 SPLASH-FFT 1.29 7 12
SMP GMRES 1.05 9 52
HPL 1.01 1 28
Jacobi 1 0 6
Multisort 1 0 4
Cholesky 1 0 8
Cell | LU 1.01 3 7
BE SAXPY 1.02 2 2
SGEMV 1.18 2 3

@ Average speedup 1.26

@ Ran on a 24-core computer node of a Cray XE6
2x AMD 2.1 GHz 12-core and 32GB main memory

Foivos S. Zakkak

SCOOP

16/23

Scalability on x86

speedup over BDDT

3.5

2.5

1.5

Black-Scholes —+— /
SMPSs-FFT —>—

SPLASH-FFT ——
GMRES —&—

HPL —&— /
Jacobi —e—

Multisort +/

number of cores

Foivos S. Zakkak SCOOP 17/23

Exposing Independencies

[instantiation
B wait

O execution
B remaining

T TR T O ‘

[os R} los B! sk} los B! [k} [vs R} o
SRE AT TAE TAT BAT TART BAE
U9z TURZ TUQZ UTUQZ TUQZz Tz TQZ
H%U q%o H%U e%o H%U H%U a%o
x-S o) \’\Xﬂ

S
S v o
P N s s 306 QLN

Foivos S. Zakkak SCOOP 18/23

Introduction

®

SCOOP

®

Evaluation

(]

Conclusions and Discussion

Conclusions

SCOOP, with its evaluation, confirm that static analysis along with
compile-time transformations can drastically improve the
performance of task-based programming models.

SCOOP managed to:
© reduce BDDT's dependence analysis overhead
@ improve the benchmarks' scalability

Foivos S. Zakkak SCOOP 20/23

Discussion

Our experience taught us that:

@ There is space for compile time optimizations in task-based
programming models

@ SCOOP’s design allows easy porting to completely different
architectures

@ SCOOP's C extensions make programming a lot easier than
using BDDT's API

@ SCOOP could be used also as a tool increasing the
programmer's productivity. With some extra effort it can:

e report possible wrong memory footprints
e infer the task memory footprints

Foivos S. Zakkak SCOOP 21/23

Future Work

© Express complex task footprints

(ie. lists, hashtables)

@ Dynamically allocate or deallocate memory within tasks
(ie. add/remove node)

© Reduce memory management overhead
(less mallocs due to memory pool)

© Reduce dependence analysis overhead
(a single dependency check for the whole region)

© Increase memory locality
(by implementation)

Port to other platforms

e SCC/BDDT

e Formic/Myrmics

Foivos S. Zakkak SCOOP 22/23

Acknowledgements

Advisor:
e A. Bilas
Co-advisors:
@ D. Nikolopoulos
o P. Pratikakis

Commiittee:
o E. Markatos

Colleagues:
@ D. Chasapis

o G. Tzenakis

Foivos S. Zakkak SCOOP

23/23

