
Enabling RISC-V support on MaxineVM
Foivos S. Zakkak

The University of Manchester
United Kingdom, M13 9PL

foivos.zakkak@manchester.ac.uk

Juan Fumero
The University of Manchester
United Kingdom, M13 9PL

juan.fumero@manchester.ac.uk

Christos Kotselidis
The University of Manchester
United Kingdom, M13 9PL

christos.kotselidis@manchester.ac.uk

ABSTRACT
In this paper we outline the current state of language Virtual Ma-
chines (VMs) running on RISC-V as well as our initiatives in aug-
menting the existing ecosystem with Maxine VM, a state-of-the-
art open source research Virtual Machine (VM). Maxine VM is
a metacircular VM for Java and is currently part of the Beehive
ecosystem that provides a uni�ed framework for hardware/software
co-designed research on managed languages runtimes.

1 INTRODUCTION
Recently we are witnessing a trend towards providing open source
modular language virtual machines. This trend is driven mainly
by the need to reuse successful components across di�erent VMs.
Hence, numerous virtual machines such as Oracle’s HotSpot [5],
IBM J9 [6], .NET [10], Google v8 [4], and RPython [2], have been
recently open sourced. In addition, projects like Eclipse OMR [3],
Graal VM [13], and Mu [11] provide a set of core components useful
to VM implementers, where each component is self-contained and
able to interface with others through well-de�ned APIs.

Regarding RISC-V support, only the Jikes research Virtual Ma-
chine [9] can currently execute some workloads with its baseline
compiler. In this work we present our e�orts to bring RISC-V
support to another research virtual machine, namely the Max-
ineVM [7, 12].

2 MAXINE VM AND THE BEEHIVE
ECOSYSTEM

MaxineVM features mature compilers that support both 64 and 32
bit execution modes for x86 and ARM architectures. In addition,
MaxineVM is a core component of the Beehive [8] project that aims
in developing a whole ecosystem of tools and runtimes for con-
ducting research on managed runtimes on emerging heterogeneous
architectures. As a result, porting MaxineVM to RISC-V will enable
parts of the Beehive ecosystem (depicted in Figure 1) to be used on
VM-related RISC-V research projects.

The goal of the Beehive Ecosystem is to provide a framework
with the following characteristics regarding hardware/software
co-design:

• Modular and easily extensible.
• Implemented with high level languages with good IDE sup-
port and low entry barrier.

• Realistic and diverse simulation infrastructures.
• Support of multiple hardware architectures.
• Support of heterogeneous systems.
• Capability of implementing multiple languages.
• Integration with popular research tools.

On the top layer of the stack are the groups of applications that
Beehive aims to improve the state of the art for. These applications

range from the standard benchmark suites, to applications run-
ning on top of Big Data frameworks, including domain speci�c
applications and implementations of managed languages.

The runtime layer (second from top) incorporates all the runtime
mechanisms necessary to execute a managed language. This layer
uni�es, under the same compilers and runtimes, high-quality poly-
glot production and research VMs. It will feature two VMs, Maxine
and OpenJDK HotSpot, that share a common optimizing compiler,
Graal, and the Tru�e runtime framework. OpenJDK HotSpot repre-
sents the production VMs, while MaxineVM [12] is a meta-circular
research VM.MaxineVMwill ultimately be compatible with the Java
Virtual Machine Compiler Interface (JVMCI), and the JikesRVM’s
Memory Management Toolkit (MMTk) [1], combining two pow-
erful interfaces that will enable experimentation with di�erent
compilers and garbage collectors.

2.1 RISC-V support
Currently, MaxineVM supports ARMv7 and x86 architectures with
the AArch64 support being underway. In addition, new initiatives
to port MaxineVM and hence part of the Beehive ecosystem to
RISC-V have been made. To that end, as of MaxineVM release 2.31,
we have ported MaxineVM’s CrossISA toolkit [7] to RISC-V. The

1https://github.com/beehive-lab/Maxine-VM/tree/v2.3.0

Heterogeneous Architectures

Aarch64

ARMv7

x86

GPUS FPGAs

VPUs ASICs

Resiliency

Simulators Emulated 
Architectures

MAMBO
Dynamic 
Binary

Translator

MaxSim/Zsim

C
om

pu
te

 P
la

tfo
rm

Maxine VM

T1X

OpenCL
Heterogeneous 

Accelerator

Operating System 

Traditional Benchmarking 
(SpecJVM, Dacapo, etc.)

Computer Vision 
SLAM Applications

Big Data 
Applications 
(Spark, Flink, 
Hadoop, etc.)DSLs (LLVM IR, etc.)

Full System Co-design

Pow
er

Pe
rf

or
m

an
ce

Services and Drivers
 (PIN, MAMBO, MAMBO-X64)

ISA extensions

A
pp

lic
at

io
ns

R
un

tim
e 

La
ye

r

Scripting and Dynamic 
Languanges

(Ruby, Scala, R, etc.)

Indigo
SIMD Accelerator

(SSE)

OpenJDK HotSpot
Truffle
Graal

Virtualization (KVM)

C1
MMTk G1, ParallelGC, etc.

VoltspotMachine Learning
(FEAST, KNN, SVM)

GEM5 
Full System Simulator

HotspotNVSimMcPATCacti

MAST
FPGA Accelerator

Framework

Fault Injection

RISC-V

Figure 1: The Beehive ecosystem

https://github.com/beehive-lab/Maxine-VM/tree/v2.3.0


CrossISA toolkit enables the rapid prototyping of new ISA ports
(assemblers and compilers) via an automated manner. The CrossISA
toolkit utilizes the QEMU port to RISC-V to simulate bare-metal
tests that are generated using the MaxineVM’s compilers code. We
have also created a screencast2 to demonstrate the usage of the tools
and showcase the process of porting the assembler to RISC-V. We
anticipate that with strong community support we will manage to
port and executeMaxineVMon RISC-V in a timelymannerwhile the
addition of JVMCI/Graal andMMTk [1] will enact research on RISC-
V for a plethora of managed languages (supported by Tru�e) and
garbage collection algorithms (supported by MMTk). MaxineVM is
fully open-sourced at: https://github.com/beehive-lab/Maxine-VM.

REFERENCES
[1] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and

Water? High Performance Garbage Collection in Java with MMTk (ICSE ’04).
[2] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.

Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In Proceedings of the 4th
Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS ’09). ACM, New York, NY, USA,
18–25. https://doi.org/10.1145/1565824.1565827

[3] Eclipse Foundation. 2017. Eclipse OMR. Retrieved Jan 10, 2018 from https:
//www.eclipse.org/omr/

[4] Google. 2017. v8. Retrieved Jan 10, 2018 from https://developers.google.com/v8/

[5] The OpenJDK HotSpot Group. 2017. OpenJDK HotSpot. Retrieved Jan 10, 2018
from http://openjdk.java.net/projects/jdk/

[6] IBM and Eclipse Foundation. 2017. Eclipse OpenJ9. Retrieved Jan 10, 2018 from
https://www.eclipse.org/openj9/

[7] Christos Kotselidis, AndyNisbet, Foivos S. Zakkak, and Nikos Foutris. 2017. Cross-
ISA Debugging in Meta-circular VMs. In Proceedings of the 9th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages (VMIL
2017). ACM, New York, NY, USA, 1–9. https://doi.org/10.1145/3141871.3141872

[8] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nisbet, John Mawer,
Will Toms, James Clarkson, et al. 2015. Project Beehive: A Hardware/Software
Co-designed Stack for Runtime and Architectural Research. In 9th International
Workshop on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG) (2015). http://arxiv.org/abs/1509.04085

[9] Martin Maas, Krste Asanović, and John Kubiatowicz. 2017. Full-System Simula-
tion of Java Workloads with RISC-V and the Jikes Research Virtual Machine. In
First Workshop on Computer Architecture Research with RISC-V (CARRV).

[10] .NET. 2018. Microsoft .NET. Retrieved Jan 10, 2018 from https://github.com/
Microsoft/dotnet

[11] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and Antony L.
Hosking. 2015. Draining the Swamp: Micro Virtual Machines as Solid Foundation
for Language Development (SNAPL 2015).

[12] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,
Laurent Daynès, and Douglas Simon. 2013. Maxine: An Approachable Virtual
Machine for, and in, Java. ACM TACO 9, 4, Article 30 (Jan. 2013).

[13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All (Onward! 2013).

2https://youtu.be/K-BZpAX_dvY

2

https://doi.org/10.1145/1565824.1565827
https://www.eclipse.org/omr/
https://www.eclipse.org/omr/
https://developers.google.com/v8/
http://openjdk.java.net/projects/jdk/
https://www.eclipse.org/openj9/
https://doi.org/10.1145/3141871.3141872
http://arxiv.org/abs/1509.04085
https://github.com/Microsoft/dotnet
https://github.com/Microsoft/dotnet
https://youtu.be/K-BZpAX_dvY

	Abstract
	1 Introduction
	2 Maxine VM and the Beehive Ecosystem
	2.1 RISC-V support

	References

