

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 1 of 23

ACTiCLOUD: ACTivating resource efficiency and large databases in the
CLOUD

Project No: 732366

H2020-ICT-2016-1

Technical Report on Hyperscale JVM v1.0

18/12/2018

Executive summary:

This technical report is based on ACTiCLOUD’s Deliverable 3.2 that provides the initial version of
ACTiCLOUD's custom Java Virtual Machine implementation, named as Hyperscale JVM. The
technical report describes the software source code and its documentation.

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 2 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

List of authors:

Author Affiliation

Christos Kotselidis UNIMAN

Foivos Zakkak UNIMAN

ACTiCLOUD Consortium:

Participant No Participant organisation name
Short
name

Country

1 (Coordinator)
Institute of Communication and Computer
Systems

ICCS Greece

2 Numascale AS NSCALE Norway

3 Kaleao Limited KALEAO UK

4 OnApp Limited ONAPP Gibraltar

5 University of Manchester UNIMAN UK

6 MonetDB Solutions B.V. MDBS Netherlands

7 Neo Technology NEO Sweden

8 UMEA University UMU Sweden

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 3 of 23

Confidentiality:

This document contains proprietary and confidential material of certain ACTiCLOUD contractors,
and may not be reproduced, copied, or disclosed without appropriate permission. The
commercial use of any information contained in this document may require a license from the
proprietor of that information.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 4 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

Table of Contents
1 Introduction ... 6

2 Overview .. 7

2.1 Task 3.2: Hyperscale managed runtimes ... 7

2.2 In this Technical Report... 7

2.3 Relation to ACTiCLOUD’s Objectives, Use Cases and Business Scenarios 9

3 The Hyperscale JVM .. 10

3.1 Generic Description .. 10

Initial Status ... 10

3.2 Improvements and Updates within ACTiCLOUD .. 10

Java 8 support .. 10

Continuous Integration (CI) Infrastructure ... 11

AArch64 support ... 11

MMTk Integration ... 16

GarbageBench .. 17

Code Repositories Metrics .. 20

Publications ... 23

4 Documentation .. 23

MaxineVM Build and Run Instructions .. 23

Debugging using MaxineVM’s Cross-ISA testing infrastructure ... 23

Figures
Figure 1: Relation between Software Artifacts (SAs) of Table 1 and HJVM .. 9

Figure 2 : The CrossISA toolchain. ... 14

Figure 3 : Adding MethodIDs to IR graph and generation of method database during compilation.
 ... 14

Figure 4 : MaxineVM (HJVM) successfully booting and executing HelloWorld on an AArch64 core.
 ... 15

Figure 5 : GarbageBench UML Diagram. ... 19

Figure 6 : Screenshot after MaxineVM’s v2.2.0 release (23/11/2017) with Java 8 support. 21

Figure 7 : Screenshot after MaxineVM’s v2.4.0 release (30/5/2018) with HelloWorld on AArch64.
 ... 21

Figure 8 : Screenshot of Hacker News the next day of MaxineVM’s v2.2.0 release (24/11/2017). .. 22

Tables
Table 1: List of D3.2 software deliverables and relation with SOs and use cases. 7

Table 2 : Code Metrics and location of delivered SAs. .. 20

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 5 of 23

List of Abbreviations

Abbreviation Meaning

CI Continuous Integration

DOA Description of Action

QA Quality assurance

WP Work Package

WPL Work Package Leader

GC Garbage Collection

ISA Instruction Set Architecture

JVM Java Virtual Machine

HJVM Hyperscale JVM

LOC Lines of Code

SA Software Artifact

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 6 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

1 Introduction
ACTiCLOUD’s vision is to develop a novel cloud architecture that will break the existing scale-up
and share-nothing barriers and enable the holistic management of physical resources both at the
local cloud site and the distributed levels, targeting drastically improved utilization and
scalability of resources. This will ultimately translate to: a) significant cost and performance
improvements for CSPs, b) higher performance stability and lower pricing for cloud applications,
and c) enhanced flexibility and scalability of cloud resources for intensive database applications
that have until now faced tough challenges in covering their resource demands from existing
cloud offerings.

ACTiCLOUD brings together prestigious academic institutions with extensive expertise in
addressing R&D challenges in the areas of large-scale cloud architectures, distributed systems
and software, with industrial partners whose products span the entire stack of cloud computing
with technologies that break through today’s scale-up and share-nothing limitations, with server
architectures, cloud system software and up to cutting-edge database systems. By joining these
forces, we aim to enhance the viability of cloud deployment scenarios through enhancement of
the various technology ingredients, i.e. the hypervisor, the cloud manager, system libraries,
language runtimes and database systems with a novel and holistic set of mechanisms and policies
built on top of these new-generation computing system architectures and therefore enabling a
distributed, hyper-converged, “share-anything”, resource scale-out cloud platforms to broaden
the applicability of cloud technology across more markets through richer and more cost effective
application deployments.

In ACTiCLOUD, the University of Manchester undertakes the role of designing, implementing and
optimizing Java Virtual Machines (JVMs) for the server architectures proposed by ACTiCLOUD. In
this technical report, the current progress of the proposed HyperScale JVM is presented along
with the technical outcomes during the first implementation period of ACTiCLOUD with respect
to Task T3.2 of WP3.

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 7 of 23

2 Overview
In this section we briefly revise the task and the deliverable descriptions and we describe how
the presented work relates to the project’s Strategic Objectives and use cases of the partners.

2.1 Task 3.2: Hyperscale managed runtimes

Task 3.2 and in general the undertaken work in the context of HyperScale JVMs is based on
OpenJDK’s compilers (Graal). Since Graal is shared among both industrial and research VMs, it
allows us to perform versatile research and development on different contexts. While, a part of
the work will be conducted on state-of-the-art industrial-strength JVMs (OpenJDK), significant
effort is also placed on bringing up a state-of-the-art research VM (MaxineVM) transitioning it to
ACTiCLOUD’s envisioned Hyperscale JVM (HJVM).

Sections 2.2 and 3 describe in detail the necessary steps to achieve HJVM as well as our progress
until M18. The resulting HJVM will enable us to not only perform detailed and accurate research
on the underlying novel architectures but also increase the impact on the research community as
it will be the first JVM capable of such functionalities.

2.2 In this Technical Report

As already mentioned, the dual approach that we follow on ACTiCLOUD regarding the research
and development of HJVMs have generated several software artifacts that span across different
JVM implementations. Table 1 lists those along with their relation to both the Strategic
Objectives (SO) and the use cases of the partners.

Strategic Objective 1 (SO1): Effective utilization of cloud resources.

Strategic Objective 2 (SO2): Deployment of resource demanding applications in the cloud.

Table 1: List of D3.2 software deliverables and relation with SOs and use cases.

No Software Artifact Description
Relation to
SO

Relation to
use cases

1
Transition of
MaxineVM to Java8

During this work we
developed the necessary
software changes for
transitioning MaxineVM to
Java8 (previously on Java7).

SO1
Necessary to
execute Neo4J
on the HJVM.

2
Continuous
Integration (CI)
Framework

Implemented a CI
integration framework for
stability and regression
testing during ACTiCLOUD.

Indirectly
to SO 1, 2

Stability and
performance
testing of new
optimizations
for all use

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 8 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

cases.

3 AArch64 port of
MaxineVM

Ported the MaxineVM to the
ARM AArch64 architecture.

SO 1

Necessary to
execute all use
cases on the
Kaleao KMAX
platform.

4 Integration with
MMTk

Integration of MaxineVM
with the Memory
Management Toolkit
(MMTk) for fast prototyping
and experimentation of
Garbage Collection
Algorithms.

SO 2

Necessary to
implement
NUMA-aware
GC
optimizations
on both
Numascale and
KMAX
architectures.

5 GarbageBench

Implementation of a
synthetic Garbage Collection
benchmark for feasibility
studies and
experimentation.

SO 1, 2

Necessary to
isolate GC
performance
metrics and
assess the
memory
optimizations
of HJVM for all
use cases and
platforms.

As shown in Table 1, numerous developments have taken place in different fronts and contexts
with the ultimate goal being the release of the HyperScale JVM in the final phase of the project.

Figure 1 illustrates how the above software artifacts compose the resulting HJVM (described in
more detail in Section 3).

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 9 of 23

Figure 1: Relation between Software Artifacts (SAs) of Table 1 and HJVM

As shown in Figure 1, HJVM consists of the integration of MaxineVM with MMTk along with its
execution capabilities on the Numascale and KMAX platforms. HJVM, relates with OpenJDK by
employing the same optimizing compiler (Graal). In addition, HJVM can execute Java7 and Java8
workloads including standard benchmarks, Neo4J, Apache Flink, and GarbageBench (SA 5).

2.3 Relation to ACTiCLOUD’s Objectives, Use Cases and Business Scenarios

As shown in Table 1, all SAs contribute directly or indirectly to ACTiCLOUD’s Strategic Objectives
(SOs). All SAs that ultimately constitute parts of the HJVM enable not only the execution of the
partners’ use cases on the ACTiCLOUD architecture but will also provide a platform for
experimentation and performance optimizations. Table 1 explains how each of the software
components enables ACTiCLOUDs use cases. Regarding the SOs, the HJVM integrated with the
rest of the layers of ACTiCLOUD contributes to both SOs as it will enable both increased
performance and efficient resource utilization.

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 10 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

3 The Hyperscale JVM

3.1 Generic Description

Figure 1 depicts the Hyperscale JVM (HJVM) and its surrounding components as envisioned by
ACTiCLOUD. As shown, it consists of two main components: MaxineVM and MMTk. In addition,
the JVM has to run on both x86 and AArch64 architectures in order to utilize the hardware
platforms of the ACTiCLOUD architecture (Numascale-x86 and Kaleao KMAX-AArch64). Finally,
the HJVM will have to be able to execute the workloads of interest to ACTiCLOUD; namely Neo4J,
Apache Flink and standard benchmarks. In addition to the above the HJVM must be able to run
on the hypervisors provided by OnAPP.

Initial Status

To reach a fully functional state of the HJVM shown in Figure 2, the SAs (steps) of Table 1 had to
be completed. The starting point of our work was MaxineVM running on Java 7 on the x86
architecture. Evidently, a significant development effort had to be made to transition to an
operational stage of HJVM before we explore any optimizations. The next subsection (3.2) details
those improvements.

3.2 Improvements and Updates within ACTiCLOUD

Java 8 support

Java 8 support is critical for the HJVM since it is essential to run Neo4J workloads. Neo4J relies
heavily on Java 8 and therefore it was imperative that the HJVM would also support it.

Transitioning HJVM from Java 7 to Java 8 was a complicated process since this particular update
revision of the JVM was a major one (compared to previous releases). The key feature of Java 8 is
the support of lambda expressions which is supported by a new Java bytecode (namely
invoke_dynamic) that enables the execution of method handles. The implementation of these
features propagates throughout the JVM since all compilers, runtime layers, and JDK support
must be updated to support the new bytecodes and work to completion to support Java 8.

The low-level nature of this work1, since all compilers have to be augmented as well as inline
assembly has to be added, created a number of implementation challenges during its
development. Finally, we successfully managed to transition HJVM to Java 8 as of version 2.2
(https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0) with the HJVM now
successfully building with Java 8. Please note that although we maintained backwards
compatibility with Java 7, a decision has been made to drop support for Java 6 (and backwards)
due to implementation and support complexity. The current version of the HJVM supports both
Linux and OSX platforms on Java 8 and the pass-rates as well as performance results on standard
benchmarks (Dacapo-9.12 and SpecJVM2008) can be found here: https://maxine-
vm.readthedocs.io/en/latest/Status.html.s

The work carried out during the ACTiCLOUD project regarding the transitioning of MaxineVM to
Java 8 resulted in MaxineVM being the only research VM available that is able to execute
advanced features of the Java programming language. In addition, this transition creates new
research opportunities for enabling HJVM polyglot JVMs (VMs that support more than one

1 e.g. https://github.com/beehive-lab/Maxine-VM/commit/c7e0b198a3785f9fdca9b0c02c32c7aaae9958d8

https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0
https://github.com/beehive-lab/Maxine-VM/commit/c7e0b198a3785f9fdca9b0c02c32c7aaae9958d8

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 11 of 23

programming language) as described in our paper published this year at the MoreVMs workshop
where we set ACTiCLOUD’s vision regarding future research VMs2.

Continuous Integration (CI) Infrastructure

Although the work described in this subsection is not reflected in the DOA of ACTiCLOUD, we
include it for completeness and in order to highlight the impact that SA 1 had in the VM research
community.

Upon successfully transitioning to Java 8, MaxineVM became the only research VM capable of
supporting modern workloads and applications such as Neo4J. The proper dissemination of our
results, through the ACTiCLOUD’s channels, resulted in an increased interest of external VM
developers and researchers.

Until that point in time, the majority of researchers have been using JikesRVM3 as their platform
of choice. However, since JikesRVM does not support Java 8, numerous developers have shifted
their interest to MaxineVM. Combining this development with our ongoing work on MMTk
integration (originated in the context of JikesRVM) as well as the plethora of platforms that
MaxineVM supports (SA3), CI tools have to be developed in order to ease our workflows,
verification and validation processes, and regression testing.

Therefore, proper CI tools based on the Jenkins framework4, have been developed and integrated
with Github and ACTiCLOUD’s Slack channels in order to support external collaborations as HJVM
is gaining attention in the research community. In addition, the implementation of the CI
framework will help us in continuing supporting HJVM after ACTiCLOUD’s completion as stated
in the DOA.

AArch64 support

The support of the AArch64 ISA (and architecture) is one of the key enablers of the HJVM since
its vital in order to utilize the KMAX architecture. Porting MaxineVM to the AArch64
architecture entailed a significant development and debugging effort that concentrated in
successfully porting both of its compilers (namely T1X and C1X), the runtime and native layers,
as well as implementing all compiler stubs and adapters that are mainly written as inline
assembly.

During the activities of porting MaxineVM to the AArch64 architecture, many challenges have
been encountered and a number of tools and frameworks have been developed in order to aid the
effort. During this activity we researched and developed the CrossISA Tookit5: a software
framework to assist in the development and debugging efforts of Virtual Machines. The CrossISA
Toolkit has been developed following a modular approach which makes possible for it to attach

2 Foivos S. Zakkak, Andy Nisbet, John Mawer, Tim Hartley, Nikos Foutris, Orion Papadakis, Andreas
Andronikakis, Iain Apreotesei, Christos Kotselidis. On the Future of Research VMs: A Hardware/Software
Perspective. In MoreVMs 2018 Workshop on Modern Language Runtimes, Ecosystems, and VMs, April 2018.
3 https://www.jikesrvm.org
4 https://jenkins.io
5 Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, and Nikos Foutris. Cross-ISA debugging in meta-
circular VMs. In the 9th International Workshop on Virtual Machines and Intermediate Languages (VMIL
'17), October 2017.

https://www.jikesrvm.org/
https://jenkins.io/

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 12 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

to any Virtual Machine in a “plug-and-play” fashion. The following paragraph describes in detail
the developed framework as well as the challenges it tackles.

CrossISA Toolkit

Extending current Virtual Machine implementations to new Instruction Set Architectures
(ISAs) entails a significant programming and debugging effort. Meta-circular VMs add another
level of complexity towards this aim since they have to compile themselves with the same
compiler that is being extended. Therefore, having low-level debugging tools is of vital
importance in decreasing development time and bugs introduced.

The problem of meta-circularity

The fact that Maxine VM’s bootimage is ahead-of-time compiled by one of its runtime
compilers, creates a paradox when trying to port it to a different ISA. This paradox along with
the fact that Maxine VM is implemented in the same programming language it executes -Java-
results in its meta-circular nature. Ideally, to test the validity of the generated code for the new
ISA, we would like to run the VM and through its unit testing framework start testing
individual compiled methods under the new ISA. However, this is not possible in our case since
we cannot boot the VM if we do not ensure that the compilers have been ported to the new ISA.
At the same time, we cannot test the compilers through the VM’s testing framework if we
cannot boot the VM.

MaxineVM (and consequently HJVM), being itself a metacircular VM, falls into this category and
therefore a set of tools and methodologies had to be developed to assist the porting activities to
AArch64.
During that process, we developed a QEMU-based toolchain which enables us to debug a wide
range of VM features in an automated way. The developed and published CrossISA toolchain6 has
been integrated with the JUNIT-based testing framework of Maxine VM and can execute from
simple assembly instructions to fully JIT compiled code. Furthermore, it is fully open-sourced and
can be adapted to any other VMs seamlessly7. Finally, a compiler-assisted methodology that helps
us identify, at runtime, faulty methods that generate no stack traces, in an automatic and fast
manner has been developed.

Figure 2 outlines the developed CrossISA toolkit. As shown, the existing unit testing framework
of Maxine VM communicates with the MaxineTester class which is responsible for the whole
coordination. In order to run a unit test the following steps are performed in order:

1. MaxineTester Initialization: When the unit tests are invoked, they initialize (1) the
MaxineTester which resets all internal state and QEMU output files. This process is
performed per unit test by invoking the initialize call before every unit test (using the

6 Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, and Nikos Foutris. Cross-ISA debugging in meta-circular
VMs. In the 9th International Workshop on Virtual Machines and Intermediate Languages (VMIL '17),
October 2017.

7 https://github.com/beehive-lab/Maxine-VM

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 13 of 23

JUNIT’s @Before annotation). This is due to instabilities we observed during QEMU
execution which led to the unit testing framework hanging during nightly regressions.
Hence, we followed a more conservative approach in which the QEMU is re-initialized
during every unit test execution. After the initialization completes a code buffer is
returned to the unit test (2) which serves as the placeholder for the generated assembly
code.

2. Generating the code of the unit test: Depending on the nature of the unit test; i.e., simple
assembly instruction, T1X or C1X testing, the code buffer is filled in a different manner.
When the code buffer is filled, it is passed to the MaxineTester for QEMU emulation (3).

3. Composing the binary for QEMU emulation: After receiving the code to be tested, the
MaxineTester assembles the binary that will be passed to QEMU for emulation (4). The
process of creating the binary file (test.bin) is as follows: Initially, we generate the
assembly code of two helping assembly files (asm_startup.s and entry.s) which are linked
together with the binary code of the unit test. Consequently, the code buffer that
contains the assembly code of the unit test is inlined to a C file (codebuffer.c) and a
function pointer to its first entry is installed. Finally, the actual test (test.c) that links
together the codebuffer.c and the two assembly files (asm_startup.s and entry.s) is
compiled and the test.bin binary is formed. The generated test.bin binary, in essence,
contains code that helps running the binary code injected through the code buffer (i.e. a
main function with a function pointer invocation to the embedded code of the code
buffer).

4. Performing the QEMU emulation: The next step, after creating the test.bin binary file that
contains our unit test, is the QEMU emulation (5). In our case, since we port Maxine VM
to the AArch64 ISA, we simulate a Cortex-A53 processor. As shown in Figure 2, QEMU will
run the binary emulating the ARM core we defined, and upon completion, it will dump
the register file to an output file defined in the MaxineTester class.

5. Validating the execution output: The output of QEMU executing a unit test is the dump of
the register file of the emulated processor. The output register file is validated against
the expected values as set in the unit test definition. Depending on the nature of the unit
test, such definitions might be explicit (e.g. in which register we expect a certain value to
be written) or implicit (e.g. the return value of a C1X compiled method which is written
in register r0 according to the ARM calling convention).

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 14 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

Figure 2 : The CrossISA toolchain.

Figure 3 : Adding MethodIDs to IR graph and generation of method database during compilation.

When boostraping a meta-circular VM on a new ISA, many parts of the VM are still untested.
Bootstraping the Maxine VM (HJVM) is a multi-stage process in which various parts of the VM
are sequentially initialized. Since the exception handling mechanism of Maxine VM is initialized
at later stages of the boot process, we encountered numerous hard segfaults that generated no

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 15 of 23

exception stack traces. In order to identify such faulty methods during runtime, we revised the
compiler-assisted methodology shown in Figure 3.

Since most of the times the VM was failing with a hard SIGSEGV violation, we were running it
inside gdb in order to read the program counter (PC) and retrieve the address of the faulty
instruction. Our next objective was to be able to map that address to the faulty compiled Java
method in an automated manner. For that reason, we augmented Maxine VM’s compilers (both
T1X and C1X) to inject, during compilation, a unique identifier called MethodID.

The MethodIDs always start from a predefined number and are incremented in a thread-safe
manner, using compare-and-swap instructions, during a method’s compilation. In the generated
code, the MethodID manifests as a pair of mov instructions to the scratch register following
another pair of mov instructions that serve as a signature that we can later search for. At the
same time, the compiler records that unique MethodID along with the method signature in a text
file, essentially creating a database that maps MethodIDs to Java method signatures.

Upon a crash, we display the instruction sequence backwards inside gdb and search for the
MethodID signature. Then, we inquire the MethodID inside the generated text file and detect the
name of the faulty method.

With the help of the CrossISA toolkit we managed to successfully port the entire VM to the
AArch64 architecture being able to execute since version 2.48, HelloWorld on an AAArch64
odroid-c2 board, shown in Figure 4.

Figure 4 : MaxineVM (HJVM) successfully booting and executing HelloWorld on an AArch64 core.

The successful bootstrapping and execution of the HelloWorld example of MaxineVM on
AArch64, is a significant milestone towards increased pass-rates and complex workload
execution. This is due to the booting of MaxineVM being a complex process as Maxine itself is a
Java program exercising advanced execution paths until it dynamically loads a class for
application execution. Such paths include the employment of both T1X and C1X compiled code,
the execution of the native substrate, and numerous compiler stubs and adapters all
programmed in native AArch64 assembly.

The next step after successfully booting MaxineVM on AArch64 is to achieve >95% pass-rate of
the JTT benchmarks (footnote) and >95% on Dacapo and SpecJVM. In addition, Neo4J and Apache
Flink will also be successfully executed on MaxineVM on AArch64 on the Kaleao KMAX platform.
We anticipate that the above will be completed by M21 of ACTiCLOUD.

8 https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0

https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 16 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

Currently, we achieve the following pass rates:

● JTT Tests (~3000): ~99.7%
● SPECjvm2008 (single threaded): ~84%
● DaCapo (single threaded): ~61%

MMTk Integration

The integration of MaxineVM with MMTk is the final and most important step towards the
transition to the HJVM. To help the reader understand the reasoning behind this design decision
and its importance, we provide some background information regarding MMTk and its
significance in the VM research community.

The Memory Management Toolkit (MMTk)

MMTk9 is a collection of GC algorithms developed initially in the context of JikesRVM. MMTk
offers not only a set of high performing GC algorithms but it also provides the basic building
blocks for implementing new ones. MMTk currently is integrated with JikesRVM and for that
reason the latter attracts the vast majority of the researchers in the automatic memory
management research field. In the context of HJVM, we were faced with the following dilemma:
either implement our own toolkit equivalent to MMTk, or port MMTk on MaxineVM. We opted
for the second option due to limited implementation time and the potential impact of the final
integration leading to HJVM. As illustrated in Figure 1, HJVM will ultimately exercise the state-
of-the-art from both the VM (Maxine VM) and the GC (MMTk) sides. Therefore, we anticipate
that the generated impact will result in shifting the majority of the researchers to HJVM
making it the first choice of the research community. Most importantly, HJVM will leverage
the advanced GC functionality and versatility of MMTk allowing us to experiment with
numerous GC algorithms and configurations on the Numascale and Kaleao platforms in the
remaining duration of the project.

Integrating MaxineVM with MMTk is a challenging process due to the large code-bases of both
projects; collectively over 600K lines of code. In addition, the integration of these two
frameworks occurs in various places in their source code and therefore careful design and
consideration needed to be made before the integration process started.

After we studied the two code-bases we identified the following connection points and
integration steps (tasks) that were/are necessitated:

1. Integration of MMTk in MaxineVM’s build process: This task includes the dissection of
the MMTk source code from JikesRVM’s code-base, its packaging and integration with
MaxineVM’s build toolchain. Completed

2. Unification of addressing types: Both MMTk and MaxineVM use internally a set of
classes that represent address types. Notions such as Address, Offset, Word, etc., are
represented internally by classes and objects that are handled by the compilers in a
special manner. To avoid memory indirections when loading addresses, the compilers
replace those objects references with casted versions of their contents and they are
ultimately translated as memory references in the compiled code. In order to unify,

9 https://github.com/JikesRVM/JikesRVM/tree/master/MMTk

https://github.com/JikesRVM/JikesRVM/tree/master/MMTk

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 17 of 23

MMTk and MaxineVM we had to translate MMTk’s representations of addresses to
MaxineVM ones. Completed

3. Integration of MMTk’s memory allocation paths into Maxine VM’s compilers (T1X
and C1X): This task entails the integration of the memory allocation paths of MMTk to
MaxineVMs. By proper code inlining we will manage to fold away all indirect calls and
create a dense instruction sequence of small length utilizing MMTk’s allocation paths in
an efficient manner. Partially complete.

4. Thread synchronization between application (mutator) and GC threads: This task
entails the implementation of the thread orchestration and synchronization policies
between application (mutator) threads, that reside on MaxineVM, and GC threads that
reside in MMTk. Proper safepoint injection and synchronization is essential to avoid
memory leaks and inconsistent states. Not started yet.

5. Integration of MMTK’s metadata and functionality (e.g. write barriers, card tables,
remember sets, etc.) into MaxineVM: This is the last segment of the integration that
require all previous four steps to be completed. Not started yet.

Currently we have successfully completed Steps 1-2 with 3-5 remaining until completion. The
integration code is not yet published on MaxineVM’s public master branch.

GarbageBench

In parallel with the activities related to HJVM, since the very early stages of the project we
started performing performance analysis of ACTiCLOUD’s workloads to identify if a number of
optimizations could be performed quickly. The objective was to propose a set of optimizations
that could be integrated both to OpenJDK and HJVM focusing on Neo4J and Apache Flink on both
Numascale and KMAX architectures.

We started our evaluation on Numascale exercising initially standard benchmarks (Dacapo and
SpecJVM) typically used in JVM research. However, we soon realized that these benchmarks
cannot fully take advantage of such large aggregated architectures since they cannot utilize the
available TBs of memory. Consequently, we started experimented directly with Neo4J workloads
(as well as Apache Flink) where we could arbitrarily scale the JVM in great memory lengths.

Both Neo4J and Apache Flink being Java applications themselves, are executed on top of JVMs.
Therefore, their performance analysis follows standard Java performance methodologies
techniques that alone constitute a separate branch of JVM research.

Performance Analysis and Methodologies of Managed Runtime Systems

Managed Runtime Systems, such as the JVM, require a very different approach when assessing
their performance compared to static languages such as C or C++. End-to-end execution times
do not regard only application code but entail various overheads imposed by the runtime such
a GC, compilation, finalization and others. Therefore, when assessing performance of
applications running on the JVM, a clear distinction must be made about the metrics and the
stage of execution the numbers concern. Typically, a “warmup” period where “hot” code is
being “Just-In-Time (JIT)” compiled from their interpreted equivalents, is followed by “peak”
performance periods where performance stabilizes as most of the code has been compiled.
Nevertheless, runtime-related overheads such as GC and or de-optimizations are inevitably

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 18 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

measured as part of the end-to-end execution time.

When we started analyzing the performance of Neo4J, we soon realized that it was extremely
hard to isolate GC and application times to propose optimizations that regards one or the other.
Especially, when exercising TBs of main memory, as in our case with Numascale, extreme levels
of noise are factored into the results that makes the research and development of optimizations
almost impossible.

To that end, we took the decision to develop GarbageBench: a state-of-the-art GC benchmark that
can synthetically simulate different workloads, data structures and memory access partners in an
isolated way.

GarbageBench, currently at a pre-alpha release state, aims to fill the gap in VM research with
respect to GC benchmarking. Both its design and implementation allow the on-demand creation
of synthetic workloads that can emulate access partners and behaviors found in real-world
application. In contrast to the real-world applications, however, GarbageBench can stress only
the memory allocation and GC subsystems of the VM, enabling proper and isolated evaluation of
the proposed optimizations factoring out the rest of the VM and application subsystems that may
influence the results.

GarbageBench currently supports the following key features:

● Custom heap utilization: Users can define how large the workload should be in terms of
utilized memory.

● NUMA-aware thread and memory placement: Users can select among thread placement
techniques and memory allocation placements. This is very important especially in the
context of ACTiCLOUD where NUMA-aware thread and memory placement are key
enablers of the HJVM.

● Adjustable load/store operations: Users can select the ratio between load/store
operations on the selected data structure.

● Numerous data structures: Users can define a particular data structure or a set of data
structures to be used during execution. This way, we can simulate different workloads
and access partners. For example, Neo4J which is a graph database can be simulated by
using the graph data structure of GarbageBench.

Figure 5 shows the UML diagram of the current design of GarbageBench. Our first priority is to
validate GarbageBench against the memory behavior of Neo4J and open source the suite.
Naturally, more additions and enhancements will be made during the duration of ACTiCLOUD
with a clear objective being to establish GarbageBench as the benchmark of choice for JVM
research.

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 19 of 23

Figure 5 : GarbageBench UML Diagram.

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 20 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

Code Repositories Metrics

Code Metrics

Table 2 shows the code metrics extracted from our code repositories using git, as well as the
location and version number of each of the software artifacts/deliverables presented in this
section (summarized in Table 1).

Table 2 : Code Metrics and location of delivered SAs.

No Software Artifact Code Metrics (git) Location Release No

1
Transition of MaxineVM
to Java8

29 commits
1257 LOC

https://github.com/be
ehive-lab/Maxine-
VM/releases/tag/v2.2.
0

v2.2.0

2
Continuous Integration
(CI) Framework

22 commits
214 LOC

https://github.com/be
ehive-lab/Maxine-
VM/blob/master/Jenki
nsfile

-

3 AArch64 port of
MaxineVM

457 commits
31868 LOC

https://github.com/be
ehive-lab/Maxine-
VM/releases/tag/v2.4.
0

v2.4.0

4 Integration with MMTk
78 commits
6914 LOC

- -

5 GarbageBench
30 commits
2477 LOC

- v0.1.0

Summarized code metrics
616 commits
42730 LOC

Github Metrics

Figure 6 and Figure 7 are screenshots of the github statistics of the MaxineVM repository
(https://github.com/beehive-lab/Maxine-VM) for the weeks of the v2.2.0 and v2.4.0 release
respectively.

https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0
https://github.com/beehive-lab/Maxine-VM/blob/master/Jenkinsfile
https://github.com/beehive-lab/Maxine-VM/blob/master/Jenkinsfile
https://github.com/beehive-lab/Maxine-VM/blob/master/Jenkinsfile
https://github.com/beehive-lab/Maxine-VM/blob/master/Jenkinsfile
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.4.0
https://github.com/beehive-lab/Maxine-VM/releases/tag/v2.2.0

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 21 of 23

Figure 6 : Screenshot after MaxineVM’s v2.2.0 release (23/11/2017) with Java 8 support.

Figure 7 : Screenshot after MaxineVM’s v2.4.0 release (30/5/2018) with HelloWorld on AArch64.

As is evident by Figure 6, one day after the release of v2.2.0 there was a rapid increase in the
project’s page that faded out next day. We attribute this behavior to the fact that that same day a
post about Maxine VM had made it to the front page of “Hacker News” (see Figure 8) for 6
consecutive hours. Hacker News (https://news.ycombinator.com/) is one of the most popular
social news website about computer science and technology.

https://news.ycombinator.com/

ACTiCLOUD: ACTivating resource efficiency and large databases in the CLOUD

Page 22 of 23 This document is Confidential and was produced under the ACTiCLOUD project (EC Contract No. 732366)

Figure 8 : Screenshot of Hacker News the next day of MaxineVM’s v2.2.0 release (24/11/2017).

ACTiCLOUD – H2020-ICT-2016-1 Project No: 732366
Technical Report on Hyperscale

JVM v1.0

This document is Public and was produced under the ACTiCLOUD project
(EC Contract No. 732366)

Page 23 of 23

On less special circumstances, like in the case of the v2.4.0 release that didn’t coincide with
MaxineVM being in the front page of some major news platform, we observe three times more
visits than usual. These numbers show that the community follows our progress and is interested
in new releases of MaxineVM.

Publications

In parallel with the software development we have worked on publishing parts of our work in
relative journals, conferences and workshops. Our efforts have resulted in the following
publications:

1. Foivos S. Zakkak, Andy Nisbet, John Mawer, Tim Hartley, Nikos Foutris, Orion Papadakis,
Andreas Andronikakis, Iain Apreotesei, Christos Kotselidis: On the Future of Research
VMs: A Hardware/Software Perspective. MoreVMs 2018

2. Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, Mikel Luján: Type
Information Elimination from Objects on Architectures with Tagged Pointers
Support. IEEE Trans. Computers 67(1): 130-143 (2018)

3. Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, Mikel Luján: MaxSim:
A simulation platform for managed applications. ISPASS 2017: 141-152

4. Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, Nikos Foutris: Cross-ISA debugging in
meta-circular VMs. VMIL@SPLASH 2017: 1-9

5. Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, Nikos Foutris, Mikel Luján:
Experiences with Building Domain-Specific Compilation Plugins in Graal. ManLang
2017: 73-84

6. Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John Mawer, Mikel
Luján: Heterogeneous Managed Runtime Systems: A Computer Vision Case Study.
VEE 2017: 74-82

All publications made in conferences and workshops were also presented in the corresponding
venue, further disseminating our work in the ACTiCLOUD project.

4 Documentation

MaxineVM Build and Run Instructions

For detailed instructions on how to build and run the MaxineVM please follow the guide in the
public wiki of the project:
https://github.com/beehive-lab/Maxine-VM/wiki/Build-and-Usage-Instructions

After the MaxineVM is successfully built, to run a Java application use mx vm instead of java,
e.g. mx vm -jar myApp.jar or mx vm HelloWorld

Debugging using MaxineVM’s Cross-ISA testing infrastructure

We have recorded a presentation of how MaxineVM’s Cross-ISA testing infrastructure can be
utilized to develop and debug back-ends for new ISAs. The recording can be found here:
https://youtu.be/K-BZpAX_dvY

https://github.com/beehive-lab/Maxine-VM/wiki/Build-and-Usage-Instructions
https://youtu.be/K-BZpAX_dvY

