
Exploiting High-Performance Heterogeneous

Hardware for Java Programs using Graal

James Clarkson±, Juan Fumero∗, Michalis Papadimitriou∗, Foivos S.
Zakkak∗, Christos Kotselidis∗ and Mikel Luján∗

±Dyson, ∗The University of Manchester

ManLang’18, Linz (Austria), 12th September 2018



Outline

Background

Tornado
Tornado-API
Tornado Runtime
Tornado JIT Compiler

Performance Results

Conclusions

1



Context of this project
Started as the PhD thesis of James Clarkson: Compiler and Runtime Support for
Heterogeneous Programming

James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján.
Boosting Java Performance using GPGPUs.
In Proceedings of the 30th International Conference on Architecture of Computing Systems

Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John Mawer, and Mikel Luján.
Heterogeneous Managed Runtime Systems: A Computer Vision Case Study
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’17)

Partially funded by the EPSRC AnyScale grant EP/L000725/1
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Currently part of the EU H2020 E2Data Project

"End-to-end solution for heterogeneous Big Data deployments that fully exploits and
advances the state-of-the-art in infrastructure" https://e2data.eu/

European Union’s Horizon H2020 research and innovation programme under grant agreement No 780622
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1. Background
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Current Heterogeneous Computing Landscape
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Current Heterogeneous Computing Landscape
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Current Heterogeneous Computing Landscape
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Current Virtual Machines
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Our Solution: VM + Heterogeneous Runtime
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2. Tornado: A Practical Heterogeneous
Programming Framework
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Tornado

• A Java based Heterogeneous Programming Framework

• It exposes a task-based parallel programming API

• It contains an OpenCL JIT Compiler and a Runtime for running on
heterogeneous devices

• Modular system currently using:
– OpenJDK/Graal
– OpenCL

• It currently runs on CPUs, GPUs and FPGAs*
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Tornado Overview
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Tornado API: @Parallel

"It’s a developer provided annotation that instructs the JIT compiler that it is OK for
each iteration to be executed independently."
It does not specify or imply:

• iterations should be executed in parallel;

• the parallelization scheme to be used
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Task Schedules

"A task schedule describes how to co-ordinate the execution of tasks across
heterogeneous hardware.".

• Composability

• Sequential consistency

• Task-based parallelism

• Automatic and optimised data movement
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Tornado API: enabling task-based parallelism
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Tornado API: enabling task-based parallelism
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Tornado API: enabling task-based parallelism
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Task Schedules: example

1 c l a s s Ex {
2 p u b l i c s t a t i c void m u l t i p l y
3 ( Double4 [ ] a , Double4 [ ] b , Double4 [ ] c ) {
4 // code here
5 }
6
7 p u b l i c s t a t i c void add
8 ( Double4 [ ] a , Double4 [ ] b , Double4 [ ] c ) {
9 // code here

10 }
11 }
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Task Schedules: example
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Task Schedules: example
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Task Schedules: example
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3. Tornado Runtime
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Tornado: WorkFlow

Tornado Runtime Tornado Compiler

Task Graph

Task Schedule

new TaskSchedule("s0")
  .add(Ex1::add, a, b, c)
  .streamOut(c)
  .execute();

Task
void add(int[] a, int[] b, int[] c){
  for(@Parallel int i=0; i<c.length; i++){
    c[i] = a[i] + b[i];
  }
}

HIR Cache

Sketcher

- Tornado API
- code reachability analysis
- data dependency analysis

Graph Optimizer

- task placement
- data-fow optimization
- inserts low-level tasks

Task Executor

- maps tasks onto driver API
- triggers JIT compilation
- triggers data-movements

Code Generator

- compiles cached sketches
- parallelization
- device specifc built-ins

Task Execution

Driver API

OpenCL Runtime
clEnqueueWriteBufer()
clEnqueueNDRangeKernel()
clEnqueueReadBufer()

OpenCL C

__kernel void foo(…)
{
…
}

Pluggable Driver

Tornado API

Runtime Optimizations

Optimize Task Schedule

Execute Task Schedule
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Data parallelism - Task specialisation

E.g., currently we have two parallel schemes: course-grain and fine-grain

1 // Loop for GPUs
2 int idx = get_global_id (0);
3 int size = get_global_size (0);
4 for (int i = idx; i < c. length ;
5 i += size) {
6 // computation
7 c[i] = a[i] + b[i];
8 }

1 // Loop for CPUs
2 int id = get_global_id (0);
3 int size = get_global_size (0);
4 int block_size = (size +
5 inputSize - 1) / size;
6 int start = id * block_size ;
7 int end = min( start + bs , c. length );
8 for (int i = start ; i < end; i++) {
9 // computation

10 c[i] = a[i] + b[i];
11 }
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Memory Management

• Each heterogeneous device has a managed heap

• Enables objects to persist on devices

• Currently we duplicate objects which reside in the JVM heap

• No object creation on devices
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4. Tornado JIT Compiler
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Tornado JIT Compiler
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5. Case study
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Case study

Kinect Fusion: it is a complex computer vision application that is able to
re-construct a 3D movel from RGB-D camera in real time.
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Why KFusion?

• Not a normal Java application

• Complex multi-kernel pipeline
– Sustained the execution of 540-1620 kernels per second.
– SLA of 30 FPS

• Representative of cutting edge robotics/computer vision applications

• Want to deploy across many platform and accelerator combinations
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What did we get with Tornado?

Running on NVIDIA Tesla, up to 150 fps
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And compared to native code?
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Tornado is 28% slower than the best OpenCL native code.
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6. Announcement & Conclusions
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Tornado is now Open Source!

• We also have a poster tormorrow, come along!

• If you are interested, we can also show you demos on GPUs and FPGAs!
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Takeaway

• We have presented Tornado

• We have shown runtime code generation for OpenCL

• We have shown a case study for computer vision

• It is open-source, give a try!

We are looking forward for your feedback!
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Thank you very much for your attention

This work is partially supported by the EPSRC grants PAMELA EP/K008730/1 and

AnyScale Apps EP/L000725/1, and the EU Horizon 2020 E2Data 780245.

Juan Fumero <juan.fumero@manchester.ac.uk>
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Compilation times
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OpenCL Device Driver: Just In Time Compiler

OpenCL JIT Compiler and Runtime
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