
Exploiting High-Performance Heterogeneous

Hardware for Java Programs using Graal

James Clarkson±, Juan Fumero∗, Michalis Papadimitriou∗, Foivos S.
Zakkak∗, Christos Kotselidis∗ and Mikel Luján∗

±Dyson, ∗The University of Manchester

ManLang’18, Linz (Austria), 12th September 2018

Outline

Background

Tornado
Tornado-API
Tornado Runtime
Tornado JIT Compiler

Performance Results

Conclusions

1

Context of this project
Started as the PhD thesis of James Clarkson: Compiler and Runtime Support for
Heterogeneous Programming

James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján.
Boosting Java Performance using GPGPUs.
In Proceedings of the 30th International Conference on Architecture of Computing Systems

Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John Mawer, and Mikel Luján.
Heterogeneous Managed Runtime Systems: A Computer Vision Case Study
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’17)

Partially funded by the EPSRC AnyScale grant EP/L000725/1

2

Currently part of the EU H2020 E2Data Project

"End-to-end solution for heterogeneous Big Data deployments that fully exploits and
advances the state-of-the-art in infrastructure" https://e2data.eu/

European Union’s Horizon H2020 research and innovation programme under grant agreement No 780622

3

https://e2data.eu/

1. Background

4

Current Heterogeneous Computing Landscape

5

Current Heterogeneous Computing Landscape

6

Current Heterogeneous Computing Landscape

7

Current Virtual Machines

8

Our Solution: VM + Heterogeneous Runtime

9

2. Tornado: A Practical Heterogeneous
Programming Framework

10

Tornado

• A Java based Heterogeneous Programming Framework

• It exposes a task-based parallel programming API

• It contains an OpenCL JIT Compiler and a Runtime for running on
heterogeneous devices

• Modular system currently using:
– OpenJDK/Graal
– OpenCL

• It currently runs on CPUs, GPUs and FPGAs*

11

Tornado Overview

12

Tornado API: @Parallel

"It’s a developer provided annotation that instructs the JIT compiler that it is OK for
each iteration to be executed independently."
It does not specify or imply:

• iterations should be executed in parallel;

• the parallelization scheme to be used

13

Task Schedules

"A task schedule describes how to co-ordinate the execution of tasks across
heterogeneous hardware.".

• Composability

• Sequential consistency

• Task-based parallelism

• Automatic and optimised data movement

14

Tornado API: enabling task-based parallelism

15

Tornado API: enabling task-based parallelism

16

Tornado API: enabling task-based parallelism

17

Task Schedules: example

1 c l a s s Ex {
2 p u b l i c s t a t i c void m u l t i p l y
3 (Double4 [] a , Double4 [] b , Double4 [] c) {
4 // code here
5 }
6
7 p u b l i c s t a t i c void add
8 (Double4 [] a , Double4 [] b , Double4 [] c) {
9 // code here

10 }
11 }

18

Task Schedules: example

19

Task Schedules: example

20

Task Schedules: example

21

3. Tornado Runtime

22

Tornado: WorkFlow

Tornado Runtime Tornado Compiler

Task Graph

Task Schedule

new TaskSchedule("s0")
 .add(Ex1::add, a, b, c)
 .streamOut(c)
 .execute();

Task
void add(int[] a, int[] b, int[] c){
 for(@Parallel int i=0; i<c.length; i++){
 c[i] = a[i] + b[i];
 }
}

HIR Cache

Sketcher

- Tornado API
- code reachability analysis
- data dependency analysis

Graph Optimizer

- task placement
- data-fow optimization
- inserts low-level tasks

Task Executor

- maps tasks onto driver API
- triggers JIT compilation
- triggers data-movements

Code Generator

- compiles cached sketches
- parallelization
- device specifc built-ins

Task Execution

Driver API

OpenCL Runtime
clEnqueueWriteBufer()
clEnqueueNDRangeKernel()
clEnqueueReadBufer()

OpenCL C

__kernel void foo(…)
{
…
}

Pluggable Driver

Tornado API

Runtime Optimizations

Optimize Task Schedule

Execute Task Schedule

describes a
data-fow graph

each node is a

1

2

3

4

5

6

S
e
ri

a
liz

e
d

T
a
sk

 S
c h

e
d
u
le

Source
Task Schedule

7
Code Cache

23

Data parallelism - Task specialisation

E.g., currently we have two parallel schemes: course-grain and fine-grain

1 // Loop for GPUs
2 int idx = get_global_id (0);
3 int size = get_global_size (0);
4 for (int i = idx; i < c. length ;
5 i += size) {
6 // computation
7 c[i] = a[i] + b[i];
8 }

1 // Loop for CPUs
2 int id = get_global_id (0);
3 int size = get_global_size (0);
4 int block_size = (size +
5 inputSize - 1) / size;
6 int start = id * block_size ;
7 int end = min(start + bs , c. length);
8 for (int i = start ; i < end; i++) {
9 // computation

10 c[i] = a[i] + b[i];
11 }

24

Memory Management

• Each heterogeneous device has a managed heap

• Enables objects to persist on devices

• Currently we duplicate objects which reside in the JVM heap

• No object creation on devices

25

4. Tornado JIT Compiler

26

Tornado JIT Compiler

27

5. Case study

28

Case study

Kinect Fusion: it is a complex computer vision application that is able to
re-construct a 3D movel from RGB-D camera in real time.

29

Why KFusion?

• Not a normal Java application

• Complex multi-kernel pipeline
– Sustained the execution of 540-1620 kernels per second.
– SLA of 30 FPS

• Representative of cutting edge robotics/computer vision applications

• Want to deploy across many platform and accelerator combinations

30

What did we get with Tornado?

Running on NVIDIA Tesla, up to 150 fps

31

And compared to native code?

OpenCL

Tornado-JR

Tornado-OR

0

50

100

150

200

250

0 250 500 750
Frame Number

Fr
am

es
 P

er
 S

ec
on

d

Tornado is 28% slower than the best OpenCL native code.
32

6. Announcement & Conclusions

33

Tornado is now Open Source!

• We also have a poster tormorrow, come along!

• If you are interested, we can also show you demos on GPUs and FPGAs!

34

Takeaway

• We have presented Tornado

• We have shown runtime code generation for OpenCL

• We have shown a case study for computer vision

• It is open-source, give a try!

We are looking forward for your feedback!

35

Thank you very much for your attention

This work is partially supported by the EPSRC grants PAMELA EP/K008730/1 and

AnyScale Apps EP/L000725/1, and the EU Horizon 2020 E2Data 780245.

Juan Fumero <juan.fumero@manchester.ac.uk>

36

Compilation times

0.00

0.05

0.10

0.15

0.20

AMD
A10

7850K

Intel
i7

4850HQ

Intel
E5

2620

AMD
Radeon

R7

Intel
Iris Pro
5200

NVIDIA
GT

750M

NVIDIA
Tesla
K20m

T
im

e
 (

s
e

c
o

n
d

s
)

OpenCL Graal

37

OpenCL Device Driver: Just In Time Compiler

OpenCL JIT Compiler and Runtime

38

	Background
	Tornado
	Tornado-API
	Tornado Runtime
	Tornado JIT Compiler

	Performance Results
	Conclusions

