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ABSTRACT

The proliferation of heterogeneous hardware in recent years means
that every system we program is likely to include a mix of compute
elements; each with different characteristics. By utilizing these avail-
able hardware resources, developers can improve the performance
and energy efficiency of their applications. However, existing tools
for heterogeneous programming neglect developers who do not
have the time or inclination to switch programming languages or
learn the intricacies of a specific piece of hardware.

This paper presents a framework that enables Java applications
to be deployed across a variety of heterogeneous systems while
exploiting any available multi- or many-core processor. The novel
aspect of our approach is that it does not require any a priori knowl-
edge of the hardware, or for the developer to worry about managing
disparate memory spaces. Java applications are transparently com-
piled and optimized for the hardware at run-time.

We also present a performance evaluation of our just-in-time
(JIT) compiler using a framework to accelerate SLAM, a complex
computer vision application entirely written in Java. We show that
we can accelerate SLAM up to 150x compared to the Java reference
implementation, rendering 107 frames per second (FPS).

CCS CONCEPTS

« Software and its engineering — Virtual machines; Just-in-
time compilers;
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1 INTRODUCTION

The majority of programming languages used by everyday develop-
ers make the fundamental assumption that the whole program will
execute on a single processor. Moreover, the portability of these
languages is due to the fact that the majority of systems used today
run on the same type of processor: whether it be x86, POWER,
ARM or MIPS. In this homogeneous world software development
is simplified as computing systems only use a single type of proces-
sor: either in a single-core or multi-core configuration. As a result,
porting languages in their entirety to use a different processor ar-
chitecture was enough. Until recently, we did not have the need, or
requirement, to use multiple processors of different architectures
within a single application.

The pervasion of hardware accelerators into mainstream com-
puting systems is rapidly changing the programming landscape.
For example, we can find general purpose graphics accelerators
or GPGPUs in mobile phones, tablets, laptops, PCs, and servers.
Since these accelerators are programmable, it is natural to assume
that developers wish to utilize them in order to achieve improve-
ments in performance and/or energy-efficiency. However, in order
to develop effective programming languages for this heterogeneous
hardware we need to invalidate one long-standing assumption —
that all applications execute exclusively on homogeneous hardware.

To this end, heterogeneous programming languages have emerged.
These languages are specifically designed so that applications can
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utilize multiple types of devices in concert. The popular ones like
CUDA [11], OpenCL [24], and OpenACC [38] are born out of the
necessity to efficiently program GPGPUs. The consequence of this
is that they all adopt a position where work is offloaded from a
host-device onto an accelerator; mirroring how the rendering of
complex compute graphics is offloaded from a processor onto a
GPU. For example, languages such as OpenACC are geared towards
the creation of applications which offload computation onto one
or more devices of the same type. A true heterogeneous language,
however, needs to offer more to developers; such as the ability to
construct complex processing pipelines across multiple devices, or
the ability to map computation onto the device which is closest to
the data it needs to process. These efforts led us to the design and
implementation of Tornado, a framework that enables the execution
of managed languages onto any OpenCL compatible device such as
CPUs, GPUs, FPGAs, and Intel Xeon Phi. Tornado builds upon our
previous work [9, 33] and is part of the Beehive Ecosystem [1, 44].

Tornado ultimately aims to assist developers to transparently
execute their code onto any OpenCL compatible device. Further-
more, by exploiting the portability of the Java language, via the
Java Virtual Machine (JVM), Tornado is able to execute across any
JVM compatible architecture — extending its reach beyond that
of existing approaches. Finally, we showcase Tornado’s maturity
and ability to execute real-world complex applications by accel-
erating a Java version of the Kinect Fusion (KF) application. An
application that is typically beyond the computational capability of
non-hardware-accelerated implementations.

More specifically, this paper makes the following contributions:

o It presents Tornado, a heterogeneous programming frame-
work for Java that through JIT compilation transparently
accelerates applications using hardware accelerators.

o It presents how Tornado can be used to accelerate a complex
computer vision application, that is written entirely in Java.

o It evaluates the performance of a complex computer vi-
sion application written using Tornado and demonstrates
throughput of up to 107 frames per second (FPS).

2 RELATED WORK

This section reviews the most relevant related works to our ap-
proach. We focus on Java JIT compilation for heterogeneous com-
puting, and, in particular, to GPUs.

Parallel APL. Aparapi [2] is one of the most well-known API and
JIT compilers from Java byte-code to OpenCL. Aparapi program-
mers extend their classes from a common Aparapi base-class and
override a run method. Data within the kernel can be accessed if it
is declared in the same lexical scope of fields in the same class. How-
ever, Java exceptions, allocation of new arrays or creating objects
are not allowed. Moreover, only programs that follow the parallel
map semantics can be expressed with Aparapi.

Sumatra [39] uses the new Java Stream 8 API to generate parallel
code for HSAIL architectures using Graal. Sumatra makes use of
the forEach construct (map parallel semantics) and offloads, at
run-time, the Java code passed to the construct to HSAIL (a new
assembly-standard for heterogeneous devices).

Other frameworks such as JOCL [31], and JCUDA [43] use OpenCL
wrappers for Java. Using these frameworks, programmers have to
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explicitly implement their kernels in OpenCL or CUDA. This is a
handicap for many high-level users, because it requires knowledge
about the new parallel architecture and programming model.

Fumero et. al [22, 23] provide a Java API for function composi-
tion to program heterogeneous hardware. The API follows a pure
functional style within Java to easily identify and generate parallel
code. That API, however, relies on Java lambdas and well-known
parallel skeletons, such as map, reduce and pipeline, thus requiring
the user to change the code from a non-functional style.

Tornado provides just a few annotations to add in the existing
Java sequential code (in similar way to OpenMP or OpenACC) to
inform the compiler that certain loops are potentially parallel and
candidates to execute on parallel hardware (e.g., GPUs). It also
provide a very light API to group methods (task-schedule) to highly
optimize data transfers.

GPU Compilation for Java. Liquid Metal and the Lime Com-
piler [3, 15] are a runtime and a language implementation based
on Java to execute on GPUs and FPGAs. The Lime compiler stati-
cally generates heterogeneous code. Habanero Java [26] is also a
Java based language that generates OpenCL code at run-time. It
combines compile-time and run-time code generation. In similar
way, Rootbeer [40] statically generates CUDA for CUDA devices.
With our approach in Tornado, we generate code at run-time. This
allows us to specialize the generated code depending on the target
device, as we show in Section 3.3.

JaBEE [45] is a compiler framework that generates, at run-time,
CUDA from Java-bytecode. JaBEE supports many Java features
such as virtual methods and exceptions. However, in our opinion,
the reported performance is not good. Tornado makes use of ex-
isting compiler optimizations of the JVM, such as escape analysis,
aggressive inlining and loop unrolling, that improve the generated
code. Tornado also contains an optimizing runtime that improves
data movement between Java and the accelerator.

Ishizaki et. al [30] present a GPU JIT compiler for generating
CUDA code for Java collections. In a similar way to Sumatra [39],
their compiler generates parallel code from Java lambda expressions
for the forEach construct of the Java Stream API. To take advantage
of the automatic GPU JIT compilation, programmers need to adapt
their code to use these streams. Tornado takes a different approach
in which changes to the source code are minimal (as we show
in Section 3). Moreover, Tornado can compile any arbitrary Java
code, not only lambda expressions representing the map parallel
semantics.

GPU FIT compilation for other managed languages. There are
some works that generate at run-time, GPU code from high-level
and interpreted languages. Haskell [8, 28, 34], Python [4, 6, 32, 41],
Scala [7, 37], MATLAB [4, 10], JavaScript [29], Lua [10], R [21] and
Ruby [42]. As Fumero et. al [21] has demonstrated, the presented
solution for generating Java code can be extensible to other high-
level programming languages.

Summary. Tornado differs from prior work by: 1) not using a
super-set of the Java language [3, 27], 2) not using ahead-of-time
compilation [13, 40], 3) not requiring developers to write heteroge-
neous code in another language [14, 31], 4) not requiring manual
parallelization of kernels [2], and 5) supporting native library calls.
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Figure 1: Tornado Overview

Furthermore, to the best of our knowledge, Tornado is the first
framework that is able to automatically accelerate Java computer
vision applications on GPGPUs, as we show in detail in Section 4.

3 TORNADO

Tornado is a Java-based parallel programming framework that en-
ables managed programming languages to take advantage of het-
erogeneous hardware platforms. Figure 1 shows an overview of
Tornado, which comprises three main software-layers:

Tornado API: aparallel API which enables developers to iden-
tify loops that can be executed in parallel. It also provides
an API to compose and build a pipeline of multiple tasks, in
which dependencies and optimizations between them are
automatically managed in our runtime.

Tornado Runtime: an optimizing runtime that performs data
dependence analysis, optimizes data transfers, and orches-
trates the parallel execution between the Java host and the
target parallel devices.

Tornado JIT Compiler: aJIT compiler that dynamically gen-
erates heterogeneous and optimized machine code for the
target devices.

The following sections describe each component in more detail.

3.1 Tornado API

To efficiently and safely compile Java code for heterogeneous plat-
forms, Tornado relies on a minimal API that works alongside exist-
ing code without requiring developers to re-write their code. We
achieve that by providing support for expressing data-parallelism
and allowing developers to markup the induction variable of any
data-parallel loop with the @Parallel annotation. This signals the
compiler that each iteration of the loop can be executed indepen-
dently and that, consequently, it is safe to parallelize it. Note that
the use of the annotation does not provide any guarantees that the
loop will be parallelized or any information about how it can be
parallelized — just that each loop iteration can be performed inde-
pendently. If the code is executed on a machine without hardware
accelerators, the JVM will simply ignore any Tornado annotations.

A key feature of Tornado is its portability across different hard-
ware platforms as we show in Section 4. For this reason, Tornado
prohibits developers from deliberately parallelizing code for a spe-
cific architecture by not providing a mechanism to explicitly map
code onto individual threads. The parallelization is applied auto-
matically by the compiler and is discussed further in Section 3.3.

Listing 1: A simple Tornado example of array addition.

1 public class Compute {

2 public void add(int[] a, int[] b, int[] c) {

3 for (@Parallel int i = 0; 1 < c.length; i++) {
4 c[i] = a[i] + b[il;

5 }

6 }

7 public void compute(int[] a, int[] b, int[] c) {
8 TaskSchedule s = new TaskSchedule ("s0")

9 .task("t0", this::add, a, b, c)

10 .streamOut(c).execute();

11 }

12 }

Furthermore, Tornado encourages developers not to specialize data-
parallel code for a specific accelerator by using techniques such
as loop-tiling — as these are device specific and therefore restrict
portability.

To manage the execution of Java code on parallel hardware,
Tornado employs a task-based programming model. A task is a
reference to an existing Java method that has the potential to com-
pute data-parallel code. Each task encapsulates: a) the code to exe-
cute, the data it should operate on, and b) meta-data that contains
both the compiler and runtime configurations for the task. As data-
parallel code is always enclosed within a task, we use tasks as the
basic unit of execution for heterogeneous code. Developers have
the ability to map each task onto a different device in the following
ways: in the application (either statically or dynamically), automat-
ically by the Tornado runtime system, or as a tuning parameter on
the command line.

3.1.1 Task-Schedules. A key feature of Tornado is composabil-
ity — the ability to write applications with many tasks that have
complex data-dependencies. To achieve that, tasks are not executed
directly by the application. Instead, they are scheduled indirectly
via a task-schedule which provides the Tornado runtime system
greater scope for optimizing the execution of tasks. A task-schedule
is simply a group of multiple tasks. Therefore, it is a group of mul-
tiple Java methods executing data parallel code. A task-schedule
provides developers with an easy way to compose complex pro-
cessing pipelines which might run multiple tasks across multiple
accelerators. The task-schedule exists to shield developers from
the complexities of scheduling data-movement in complex applica-
tions. The result is that Tornado is able to infer all data-movement
from the task-schedule and automatically exploit any available task-
parallelism within it. Moreover, Tornado enables task-schedules to
be executed asynchronously and, hence, developers do not need to
wait for their completion. This allows developers to automatically
overlap code execution between the application running on the
JVM and the code running on the accelerators.

Listing 1 illustrates a simple Tornado example of adding two
arrays of integers. To execute the add method on a hardware accel-
erator, a task-schedule, s, that contains a single task, t0, is created.
Here the task-schedule can be thought of as a lexical closure: task
t0 will invoke the add method with parameters a, b, and c, but only
when the task-schedule is executed. In Tornado, task-schedules are



Manlang’18, September 12-14, 2018, Linz, Austria

Schedule Schedule

{ copy(a) H copy(b) H alloc(c) ]

53

copy(c) ]

[ copy(a) H copy(b) H alloc(c) ]

N
\/ add()

(a) By default data are left in- (b) An explicit copy needs
situ so that it can be reused to be generated using the
by subsequent tasks running on  streamOut(c) operator to trans-
the same device. fer the data back to the host.

Figure 2: Data Management

represented internally as data-flow graphs (also called task-graphs)
that explicitly model the data-movement between tasks. The nodes
in these graphs are individual tasks that could be executing code,
allocating memory, or transferring data. The benefit of using this
representation is that it is straightforward to generate an optimal
execution schedule that exploits task-parallelism but satisfies all
data-dependencies.

3.1.2  Data Transfers. As each task has the potential to execute
on a different device, managing data-movement is critical to obtain
high performance. Tornado manages all data-movement within
the task-schedule automatically. By default, all reference types —
objects and arrays — are copied onto the accelerator automatically
the first time they are used but are never copied back to the host.
This way the data will always remain on the last device on which
it was created and an explicit request must be made to transfer it
back to the host; hence the use of the streamOut operator. Figure 2
illustrates the semantics of the task-schedule defined in Listing 1
and why the streamOut operator is necessary to transfer c back to
the host. Although this may seem counter-intuitive for develop-
ers who are used to shared memory programming, it provides a
new dimension of optimization for heterogeneous programming
— locality. On balance, the ability to exploit locality in this way
helps to dramatically increase performance as opposed to enforcing
coherency between disparate physical memories which severely
degrades performance. Finally, since the task-schedule works as a
closure it is also a synchronization point. That means that when
control is returned from execute, the host is guaranteed to view
all required memory updates.

3.1.3  Task Execution. By default, Tornado will execute all tasks
on the first accelerator it will find in the system. However, the API
allows assigning names to each task-schedule and task, s0 and t0
respectively from Listing 1. This way, task-schedules and tasks
can be referenced by name and configured on the command line
(or elsewhere in the application). Therefore, different properties
such as the accelerator to execute a set of tasks, are not embedded
in the source code. This immediately benefits the developer by
enabling the configuration of the application without the need of
modifications to the source code and a re-compilation of the whole
application.

J. Clarkson et al.

3.1.4  Summary of the API. Tornado provides a minimal and
clean API for achieving heterogeneous execution of Java applica-
tions. It is mainly based on the notion of tasks and task-schedules
that are compositions of calls to existing code — allowing code to
be re-used extensively. Furthermore, the non-intrusive annotations
can be used by developers to improve performance without sacrific-
ing backwards-compatibility since they are ignored by the compiler
in case Tornado is not activated.

3.2 Tornado Runtime

Figure 3 illustrates a more detailed overview of the Tornado compo-
nents as well as their interaction along with a typical execution flow.
In this section, we shortly discuss each step of the execution flow
and the actions taken by Tornado. The execution is driven by task-
schedules provided by the developer, which describe a data-flow
graph of tasks (referred to as a task-graph).

Task Graph Optimizer. A task-graph is constructed the first time a
task-schedule is executed via execute or schedule and is passed to
the Graph Optimizer (1). At this stage the task-graph only contains
tasks which execute code. Since Tornado handles data-transfers
automatically, the next step is to be augment the task-graph with
tasks (or nodes) that handle data-transfers.

Tornado Sketchers. To achieve this, the Graph Optimizer passes
each node of the task-graph to the Sketcher which creates a sketch
of the code that is executed by the node (2). Essentially, the sketcher
constructs a High-level Intermediate Representation (HIR) of each
task from Java byte-code and places it in a HIR cache so it can
be retrieved by the code generator in the future. The Graph Opti-
mizer is also able to query each sketch to aid in the optimization
of the task-graph. For example, the sketcher determines the us-
age of every object accessed within a task — this can be read-only,
write-only, read and write, or unknown. Knowing this information,
the graph optimizer is able to fully populate the task-graph with
the nodes to perform the required data-transfers. This means that
data-movement is automatically inferred from the code, unlike Ope-
nACC, OpenMP and OpenCL, where developers have to manually
handle data-movement.

This “split-compilation” approach is highly-efficient since the
HIR graphs of the tasks are constructed once and can be used
multiple times — to compile tasks for different devices or to re-
compile for the same device using a different set of optimizations.
Additionally, the cache decouples the front-end and the back-end
of the compiler, making it possible for multiple back-ends to share
the same front-end. This is desirable because it makes it possible to
use different heterogeneous frameworks and code generators like
OpenCL [24], CUDA/PTX [11, 12] or HSA/HSAIL [19, 20].

Once all sketches are available, the optimizer tries to eliminate
as many unnecessary nodes as possible from the task-graph and
then generates an optimal execution schedule for the tasks. Here
the optimizer aims to minimize the length of the critical path by
overlapping the execution of data-transfers and execution where
possible. The result is a serialized list of low-level tasks; each one
describing an action that is to be applied to an abstract acceler-
ator, e.g., data-transfers and code execution (4). To avoid having
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Figure 3: Tornado Architecture Outline.

to repeatedly call the Graph Optimizer the serialized schedule is
cached.

Execution Engine. The execution of the task schedule is per-
formed by passing the serialized schedule to the Task Executor (5).
The Task Executor reads the serialized tasks in order and translates
them into calls to the driver API (6) — in our case the OpenCL
Runtime APL If the current task executes code on the accelerator,
the Task Executor retrieves the compiled code from a code cache
(7). In the event that no compiled code exists in the cache, a HIR
compilation will be triggered. Note that in this case the HIR will
be retrieved from the HIR cache. Furthermore, any parallelization
strategy or device specific built-ins are applied to the HIR at this
stage. The output of the code generator is compatible with the
driver API — in our case we generate OpenCL C code.

3.3 Tornado JIT Compiler

In Tornado, the JIT compiler is responsible for both parallelizing
code and generating the Driver API code. The Tornado JIT compiler
is built using Graal’s API and compiler framework [16, 17]. Graal is
an industrial strength JIT compiler with the ability to generate ma-
chine code directly from Java byte-code. Tornado augments Graal
with the ability to parallelize code (discussed later) and generate
the Driver API code.

Figure 4 shows the main workflow of Tornado, emphasizing the
JIT compilation part. On the top left is a Java method that performs
a vector addition. Note that the loop is annotated with @Parallel.
As usual, the method is compiled by javac into Java byte-code.
Then, at run-time, Tornado analyzes the data dependencies, per-
forms optimizations, generates the Driver API code (right side of
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Input: Java Method

: public void compute(int[] a, int[] b) {

; for (@Parallel int i = @; i < n; i++) {
i b[i] = a[i] + b[i];
o}
1

/ Heterogeneous VM (Tornado)
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Output: OpenCL Kernel

kernel void compute(global uchar *frame, ...) {
// data types declaration

ul_ @ = (ulong) frame[7];

. ul_1 = (ulong) frame[8];

Y i 2 = get_global_id(9);
\ i3 = i_2;

Tornado Data Flow Analyzer

Tornado Execution Engine

for(;i_3 < 134217728;) {

1
i
! 14 = (long) i_3;
! 15 = 1.4«<<2;
! 1.6 = 1.5+ 24L;
! ul 7 = ul o + 1_6;
! i 8 = *((global int *) ul_7);
! ul 9 = ul_1+ 1_6;
;! i_10 = *((global int *) ul_9);
) i - s +oile;

*((global int *) ul 9) = i 11;

i_12 = get_global_size(9);
i 13 = i_12 + i_3;
i3 = i 13;

Graal Compiler API / JVMCI

Figure 4: The Tornado workflow.

Figure 4), and orchestrates the parallel execution. As indicated by
the gray box on the lower left side of Figure 4, Tornado utilizes the
Graal Compiler API and JVM compiler interface (JVMCI) to interact
with the JVM. This interaction, enables one of the key features of
the Tornado JIT compiler; the integration of the Tornado optimiza-
tion pipeline with the JVM optimization pipeline. This integration
allows for better optimization by combining typical compiler op-
timizations, such as inlining and loop unrolling, with automatic
parallelization. Moreover, it ensures proper Java semantics for both
the code executed on the JVM host as well as for the code executed
on the different modules of the underlying hardware.

Apart from the analyses and optimization passes which are al-
ready present in Graal, Tornado also applies the following optimiza-
tion phases to the IR-graph:

Tornado Data Flow Analysis: Analyzes data dependencies
between tasks.

Tornado Reduce Replacements: Detects reductions and per-
forms node replacement with special Tornado reduction
nodes.

Tornado Task Specialization: Specializes the IR-graph by in-
lining fields and objects.

Tornado Driver API Intrinsics: Sets nodes for Driver API
intrinsics such as barriers and debug information.

Tornado Snippet Post-Processing: Processes non-lowerable
IR nodes that are introduced from snippets during the low-
ering phases.

Tornado Shape Analysis: Analyzes the loop index space and
determines the correct indices when using strides in loops.

Tornado Parallel Scheduler: Optimizes data-parallel loops
for the target device.

Listing 2: Loop Re-Written For CPUs.

1 int id = get_global_id(0);
2 int size = get_global_size(0);
3 int block size = (size + inputSize - 1) / size;
4 int start = id * block_size;
5 int end = min(start + bs, c.length);
6 for (int i = start; i < end; i++) {
7 clil = alil] + b[il;
8 }
Listing 3: Loop Re-Written For GPGPUs.
1 int idx = get_global_id(0);
2 int size = get_global_size(0);
3 for (int i = idx; i < c.length; i += size) {
4 c[i] = a[i] + b[i];
5}

Presently, the Tornado JIT compiler supports two parallelization
schemes: 1) the assignment of a thread to a block of iterations (block
mapping), and 2) the assignment of one thread to each iteration
in the loop. By default, the choice of scheme is governed by the
type of the target device, but it is also possible to be dynamically
configured. The first scheme provides a coarser thread granularity
which suits latency oriented devices, such as x86 cores, whereas the
second provides a finer thread granularity which is preferred by
throughput oriented devices, like GPGPUs. Listings 2 and 3 demon-
strate the generated Driver API code after the parallel scheduler
phase transforms the add function from the example provided in
Listing 1. Listing 2 shows the result of assigning a thread to a block
of iterations, suitable for latency oriented devices. On the contrary,
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Figure 5: GPU Parallel Scheduler transformation.

Listing 3 shows the result of assigning one thread to each iteration
in the loop, better suited for throughput oriented devices.

Figure 5 illustrates these compiler transformations at the IR level
when optimizing for throughput oriented devices. The left side of
the figure corresponds to the IR before the optimization and the
right to the IR after it. Each rectangle represents a node in the
IR-graph, solid arrows indicate the control flow, and dashed arrows
indicate the data flow. The right side of the figure shows the result
of applying this transformation to execute on a GPU (Listing 3).
Note that two new nodes appear (GlobalID and GlobalSize). These
nodes are later translated to OpenCL intrinsics to obtain the correct
indexes from the loop iteration space on the parallel hardware.

OpenCL C as the Driver APL. As is evident by Figures 3 and 4, as
well as by Listings 2 and 3, the current implementation of Tornado
uses OpenCL C as the Driver API The decision to use OpenCL C as
the Driver API was mainly based on the fact that OpenCL supports
a plethora of devices, allowing us to accelerate Java applications
on all these devices with a single back-end. Despite the fact that
OpenCL allows us to target a wide and diverse range of accelerators,
it prohibits us from implementing some vital features of the Java
language (e.g., exception handling) while it introduces difficulties
when implementing others (e.g., objects). Furthermore, OpenCL
comes at the cost of invoking a second JIT compiler. We first need
to compile Java byte-code to OpenCL C using the Tornado JIT
compiler and then compile the OpenCL C to machine code using an
OpenCL-compatible compiler. These issues can be resolved, albeit at
the cost of developing multiple back-ends, by generating PTX [12]
or HSAIL [20] code for the Driver APL

3.4 Java Coverage

Throughout the development of Tornado, we have found that the
only real constraint is the support of features which require calls,
either internally to the JVM or externally to a native library or the
OS. Typically, this means that features like Java reflection, I/O, or
the threading API are unable to be used inside Tornado tasks. The
reason behind these restrictions is that tasks need to be able to
execute on devices other than the one hosting the OS. Theoretically,

Listing 4: Handling Library Calls in Tornado.

1 public static void testCos(double[] a) {

2 for (@Parallel int i = 0; i < a.length; i++) {
3 a[i] = Math.cos(a[il);

4 }

5}

Tornado can support the majority of the Java language. However,
its ability to do so depends on the type of the generated low-level
code. For example, a major issue we discovered using OpenCL C is
the lack of support for direct branches, which inhibits our ability
to adequately support exceptions. Currently, Tornado is unable to
create objects on accelerators and move them under the control of
the memory manager inside the JVM or remove objects from under
the control of the memory manager. To handle such cases, Tornado
takes a practical approach where an attempt is made to compile all
code and if it is not possible, execution will revert back to running
the sequential Java inside the JVM.

3.4.1 Library Calls. Tornado also supports the invocation of li-
brary calls in Tornado tasks. Java libraries are usually implemented
in Java itself. However, some libraries rely on native implemen-
tations, e.g., java.util.concurrent. For libraries implemented in
Java, Tornado automatically inlines the library call using Graal
(see Section 3.3). However, Tornado has no way to automatically
handle invocations to library calls with native implementations. To
support such library calls, the Tornado compiler relies on intrinsic
substitution during compilation. These instrinsics need to be man-
ually defined in the Tornado compiler. Currently, Tornado ships
with pre-defined intrinsics for the java.lang.Math library. Other
library calls to native code are currently unsupported. Listing 4
gives an example of a Tornado task invoking a method from the
java.lang.Math library.

4 ACCELERATING THE KINECT FUSION
COMPUTER VISION APPLICATION

To further stress Tornado and demonstrate its capability of running
real applications, we accelerate end-to-end a complex Computer
Vision (CV) application; namely, Kinect Fusion (KF) [36]. Another
goal of this demonstration is to show that using Tornado we can: 1)
execute across as many devices as possible without requiring code
modifications, and 2) achieve high performance.

4.1 Kinect Fusion

Kinect Fusion [36] processes a stream of depth images, obtained
by a RGB-D camera, and reconstructs a three-dimensional repre-
sentation of the space (Figure 6). In order to achieve its quality
of service (QoS) target (i.e. real-time reconstruction of the envi-
ronment) Kinect Fusion needs to operate at the frame-rate of the
camera, which is 30 frames per second (FPS). Implementation-wise,
some of Kinect Fusion’s kernels are very large — about 250 lines
of code — and utilize a much wider range of Java language fea-
tures than other benchmarks that are typically used to evaluate the
performance of heterogeneous programming frameworks.

Kinect Fusion comprises a six-stage processing pipeline (depicted
in Figure 7) to process the input stream of depth images:
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Figure 6: RGB-D camera combines RGB with Depth informa-
tion to form a 3D reconstruction of a scene (right).
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Figure 7: Kinect Fusion Pipeline stages

acquisition obtains the next RGB-D frame - either from a
camera or from a file.

pre-processing applies a bilateral filter to remove anomalous
values, re-scales the input data to represent distances in
millimeters and builds a pyramid of vertex and normal maps
using three different image resolutions.

tracking estimates the difference in camera pose between
frames. This is achieved by matching the incoming data
to an internal model of the scene using a technique called
Tterative Closest Point (ICP) [5, 46].

integrate fuses the current frame into the internal model, if
the tracking error is less than a predetermined threshold.

raycast constructs a new reference point cloud from the inter-
nal representation of the scene.

rendering uses the same ray-casting technique of the previous
stage to produce a visualization of the 3D scene.

In SLAMBench each stage of the Kinect Fusion pipeline is composed
from a series of kernels. Typically, a single frame will require the
execution of 18 to 54 kernels. Therefore, to achieve the target frame-
rate of 30 FPS, the application must sustain the execution of 540 to
1620 kernels per second.

J. Clarkson et al.

4.2 Java & Tornado Implementation

A common characteristic of CV applications, regardless of the sce-
nario in which they are used, is their extreme computational de-
mands. Typically, they are written in programming languages such
as C++ and OpenMP with binding extensions for OpenCL or CUDA
execution. A common drawback of such implementations is the
lack of portability since the application has to be recompiled and
optimized for each underlying hardware platform. Building and
optimizing CV applications on top of a managed runtime system
such as the Java Virtual Machine (JVM) would enable single imple-
mentations to run across multiple devices such as desktop machines
or low-power devices. To demonstrate this, we evaluate Kinect Fu-
sion against a diverse set of heterogeneous hardware resources in
Section 4.3.

Our Java reference implementation is derived from the open-
source C++ version provided by SLAMBench [35]. During porting,
we ensured that the Java implementation produces bit-exact re-
sults when compared to the C++ one.! This is highly important,
and challenging, since Java does not support unsigned integers.
Therefore, we had to modify the code to use signed representations
and maintain correctness. Although all kernels produce near iden-
tical results during unit-testing, each implementation can produce
slightly different results when combined together due to the nature
of floating-point arithmetic.

We have developed the Java implementation with minimal de-
pendencies on third-party code and we do not use any form of
Foreign Function Interface (FFI) or native libraries. Our only depen-
dency is on the EJML library [18] for its implementation of Singular
Value Decomposition (SVD).

During preliminary performance analysis, we discovered that the
C++ implementation is 3.4 faster than Java. Despite outperforming
Java, the C++ implementation barely manages to achieve 4 FPS,
which is much lower than the expected QoS target of 30 FPS. After
the initial validation and performance analysis of our serial Java
Kinect Fusion implementation, we ported Kinect Fusion to Tornado.
To enable our baseline Java Kinect Fusion implementation to take
advantage of Tornado’s capabilities we: 1) used the Tornado API
to describe the processing pipeline, 2) annotated loops that are
safe to be executed in parallel with @Parallel, and 3) executed the
task-graph at an appropriate point in the application. The Tornado
Kinect Fusion implementation has eight separate task graphs in
total: one for each of the pre-processing, integrate, raycast and
rendering stages, and four for the tracking stage — one to create
the image pyramid and one to process each of three levels of the
pyramid.

4.3 Kinect Fusion Evaluation

To evaluate our Tornado Kinect Fusion implementation, we use
four distinct classes of heterogeneous systems (shown in Table 1).
Each system has a multi-core processor, along with a minimum of
one GPGPU that can be used for acceleration. To provide fair com-
parisons, all experiments use the same application configuration
and scene from the ICL-NUIM data-set [25].

Table 2 provides the frame-rates we achieved during our ex-
periments for all tested implementations. To better understand

Even if this failed, it came within 5 Units of Last Place (ULP).



Exploiting High-Performance Heterogeneous Hardware for Java Programs using Graal ManLang’18, September 12-14, 2018, Linz, Austria

Machine Name OS (kernel) CPU Cores OpenCL GPGPU CU OpenCL

. Intel Iris Pro 5200 40 1.2 (Apple)

Laptop 0SX 10.11.6 (14.5.0) Intel i7-4850HQ @ 2.3 GHz 4(8) 1.2 (Apple) NVIDIA GT 750M @ 925 MHz 9 1.2 (Apple)

Desktop Fedora 21 (4.1.10) AMD A10-7850K @ 1.7 GHz 4 1.2 (AMD) AMD Radeon R7 @ 720 MHz 8 2.0 (AMD)
Enterprise CentOS 6.8 (2.6.32) Intel Xeon E5-2620 @ 1.2 GHz 12(24) 1.2 (Intel) NVIDIA Tesla K20m @ 705 MHz 13 1.2 (NVIDIA)

Table 1: Hardware Configurations, CU: Number of OpenCL Compute Units.
L T -N. T - T -

Machine Java Ci+ OMP OpenC ornado-NR ornado-JR ornado-OR
CPU GPU1 GPU2 CPU GPU1 GPU2 CPU GPU1 GPU2 GPU1 GPU2
Laptop 0.87 3.69 - e 5793 e 15.01 2484  20.15 1539 4566  21.00 4836  24.61
Desktop 0.40 3.14 7.87 e e - 5.28 16.80 - 7.91 15.51 - 21.78 -
Enterprise 0.71 2.40 19.63 29.02 138.10 - 21.60 31.25 - 30.65 52.26 - 107.78 -

Table 2: SLAMBench performance in FPS for each implementation (e: failed to produce a valid result)

the results we provide three different Tornado implementations:
Tornado-NR, Tornado-JR, and Tornado-OR. Tornado-NR (No Re-
duce) does not support reduction operations. Tornado-JR (Java
Reduce) has limited support for reduction operations, which are
written in pure Java. Tornado-OR (OpenCL Reduce) has fully sup-
ports reduction operations, but relies on hand-crafted OpenCL
kernels (for the reductions only). The three implementations are
discussed in more detail later in the evaluation.

4.3.1 Measuring Performance and Accuracy. A challenge when
comparing different implementations of Kinect Fusion, and CV al-
gorithms in general, is that performance and accuracy measures
are subjective. Normally, this is due to the real measure of the al-
gorithmic quality being the user experience: does the user notice
slow performance and is it accurate enough for their needs? Never-
theless, we must ensure that each implementation of Kinect Fusion
does the same work and produces the same answer. Therefore, out
of a number of Kinect Fusion implementations we have selected
the ones provided by SLAMBench since they provide ready-made
infrastructure to measure the performance and accuracy, enabling
reliable comparisons between different implementations.

The accuracy of each reconstruction is determined by comparing
the estimated trajectory of the camera against a provided ground
truth, and is reported as an absolute trajectory error (ATE). The
ground truths are provided by the synthetically generated ICL-
NUIM data-set [25]. Finally, the performance is measured as the
average frame-rate achieved when processing the entire data-set.

For a result to be considered valid, an implementation needs to
return a mean Absolute Trajectory Error (ATE) of under 5 cm; as
per the criteria set out by SLAMBench.

4.3.2  Portability. The first notable outcome of our experiments
is that the OpenCL implementation produced valid results on only
six devices, 60% of all devices, whereas Tornado produced valid
results on all devices. This result strengthens our argument that
Tornado with its dynamic JIT compilation is able to provide high
performing heterogeneous implementations that are portable on a
wide number or devices. On the contrary, the OpenCL implementa-
tion could not execute on all devices due to the assumptions made

by the developers when they initially implemented SLAMBench
on their device of choice. These assumptions regard work-group
dimensions, and the amount of local memory available. If either
of these assumptions are invalid on the target device, the reduce
kernel fails to execute correctly. These problems are avoided in
Tornado as resource usage is determined automatically by the run-
time system and is based on the preferences of the target device.
Additionally, Tornado provides developers with a number of run-
time configuration options to influence how resources are allocated;
meaning that a number of these issues can be corrected without
re-compiling the application.

4.3.3  Performance Study. Inspecting the results in more detail,
we observe that the baseline Tornado implementation (Tornado-NR)
of SLAMBench achieves a speedup of 12-43X over the reference
Java implementation and in one case it exceeds our minimum level
of QoS at 31.25 FPS. Nevertheless, it produces 0.36x the perfor-
mance of the OpenCL implementation. To understand where the
performance loss occurs we ran a number of additional experi-
ments with finer grained measurements. Figures 8a and 8b present
the results. Figure 8a compares the amount of time spent in each
pipeline stage, while Figure 8b compares the mean execution times
of each Tornado pipeline stage against the OpenCL implementation
on the Enterprise system. From these figures we see that: 1) the
total execution times of the parallel implementations in OpenMP,
OpenCL, and Tornado, are dominated by the tracking stage, and 2)
Tornado achieves less than 0.15% the performance of the OpenCL
implementation in the tracking stage. These observations indicate
that the tracking stage is the performance bottleneck in our imple-
mentation.

Studying the tracking stage of our implementation we detected
the issue to be related to data transfers between the device and
the host. According to our measurements, the Tornado-NR imple-
mentation requires over 14MB of data to be moved between the
device and host per frame. In the OpenCL version, this problem
is addressed by using a hand-crafted reduction operation which
compresses the size of the tracking result before transferring it back
to the host. In our initial Tornado implementation (Tornado-NR),
we chose not to port this kernel because it cannot be expressed
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Figure 8: Performance breakdown on the Enterprise system. (A: acquisition, P: pre-processing, T: tracking, I: integration, Ra:

raycast, Re: rendering)
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Figure 9: Illustration of the different reduction algorithms.

in serial Java. The main issue preventing the reduction operation
being written in Java, is the ability to express the movement of data
between different threads and work-groups since such notions do
not exist in the language. Note also that providing a hand-crafted
implementation would negatively impact the portability of our
implementation.

Nevertheless, since the tracking stage has become a performance
bottleneck we revised two solutions. The first solution was to im-
plement a reduction function, in Java, that does not use inter-thread
communication (Tornado-JR), while the second was to provide Tor-
nado with a hand-crafted OpenCL C kernel that does (Tornado-OR).
The advantage of the first approach is that the code remains portable
across all devices by sacrificing performance, whereas the second
approach yields better performance but sacrifices portability.

Figures 9a and 9b illustrate the reduction operations imple-
mented in Java and OpenCL respectively (Tornado-JR and Tornado-
OR). The Java reduction uses a fixed number of threads to combine
results in a thread-cyclic manner creating one partial result per
used thread. However, the inability to communicate data between
threads means that we cannot fully utilize the hardware (dashed
boxes). The OpenCL implementation, similarly to the Java one, is a
multi-stage reduction and it is able to utilize more threads by ex-
ploiting inter-thread/intra-work group communication. The most
important difference, to the Java one, is that an extra reduction is
performed inside each work-group which results in a single value
being produced per work-group. We have also added the ability to
change the number of work-groups used in the reduction varying
the utilization of the GPGPUs compute units. It is important to
note Tornado’s ability to allow developers to add their user-defined
reduction kernels while hand-optimizing their implementations if
performance becomes an issue.

4.3.4  Performance Improvements. To evaluate the impact of our
different reduction kernels we repeated our experiments using a
number of configurations. The Tornado-JR kernel can be configured
at run-time to use different numbers of threads - we used values of:
512, 1024, 2048, and 4096 on the GPGPUs; and 0.5, 1, 2, and 4X the
number of available compute units on the CPUs. The Tornado-OR
kernel is implemented to dynamically adjust the work-group size
and number of work-groups it uses to help us vary the utilization of
the compute-units. By default, we assign a single work-group with
the largest possible dimensions onto each compute unit. As shown
in Table 2 Tornado’s performance has improved in both Tornado-
JR and Tornado-OR configurations compared to the baseline one
(Tornado-NR).

As shown in Figure 10, the Tornado implementations are ob-
taining significantly higher levels of performance. Regarding the
JR experiments, we observe performance improvements across all
devices with a maximum speedup of 74X over the reference imple-
mentation and a maximum frame-rate of 52 FPS. More importantly,
we see that three devices are now able to exceed our QoS threshold
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Figure 10: Performance in FPS after implementing the reduce kernel (N: Tornado-NR, Hand: Tornado-OR, Rest: Tornado-JR

with variable number of threads).

of 30 FPS. This means that we have been able to exceed the QoS
threshold on the same devices as OpenCL by using an implementa-
tion written entirely in Java. Moreover, if we compare these results
to OpenMP we see that although we started from a performance
point of 3-7Xx lower than C++, our Tornado implementation is able
to achieve higher performance on all CPU implementations. By
using the OR version, we have managed to obtain the highest per-
formance with a maximum speedup of 150X over the reference
implementation and a maximum frame-rate of 107 FPS on the Tesla
K20m.

Finally, regarding the comparison with the OpenCL implemen-
tation, Tornado achieves 0.59% the performance of the OpenCL
implementation by using only Java (Tornado-JR), and if a developer
wishes to sacrifice a little portability by using a single hand-crafted
OpenCL kernel this rises to 0.77x.

4.3.5 Host Side Performance. Figure 11a shows the average com-
pilation times of all tasks across all devices. In general, we observe
that compilation takes between 100-200 milliseconds and is split,
almost evenly, between the Graal and the OpenCL compiler. Tor-
nado provides the ability to manually trigger the optimization of
task-graphs and the JIT compilation of tasks before a task-schedule
is executed; this way the corresponding overheads can be removed
from time-sensitive task-schedules — such as the ones in Kinect
Fusion. Using this option mirrors how the compilation overheads
are handled in the OpenCL of Kinect Fusion.

Figure 11b shows the time spent to process each frame during
execution for the Tornado JR (2048), OR (Hand), and OpenCL im-
plementation on the Enterprise system. During the early stages
of the benchmark, all Tornado implementations experience extra
overheads from JIT compilation and garbage collection. However,
performance stabilizes after approximately 100 frames and contin-
ues to improve. After profiling, we discovered that the memory
usage of our Tornado implementations stabilizes at around 400 MB
resulting in minimal GC interference after the warmup period.

5 CONCLUSIONS AND FUTURE WORK

We demonstrate that through holistic design it is possible to de-
velop a practical heterogeneous programming framework. The dis-
tinguishing feature of Tornado is that it enables developers to write
portable heterogeneous code in pure Java. This allows them to
write applications that can be quickly deployed across different
hardware accelerators and operating systems. Moreover, our dy-
namic design allows them to avoid making a priori decisions —
instead applications can be dynamically configured at run-time.

We demonstrate that by using Tornado it is possible to write a
single implementation of a complex Computer Vision application
and deploy it across a variety of heterogeneous systems, while
maintaining comparable performance to hand-crafted optimized
equivalents. What makes Tornado unique is that it has been devel-
oped to provide heterogeneous programming support to the general
purpose Java programming language, a language that would not
normally be associated with writing either high-performance or
heterogeneous code. By utilizing the introduced Tornado frame-
work, we managed to obtain speedups of 18-150% over the reference
Java implementation. The results show that not only can we obtain
levels of performance that meet our QoS target of 30 FPS, but we
can also exceed our target by up to 3x (at 107 FPS). Moreover, we
demonstrate that Tornado is able to utilize 2.3x more devices than
the hand-written OpenCL.

Experiences with OpenCL. Although Tornado is able to execute
complex Java applications across a wide range of accelerators suc-
cessfully, a number of key issues remain. Tornado is currently
based on OpenCL. More desirable options such as CUDA/PTX or
even HSA/HSAIL would have severely restricted the diversity and
number of accelerators that we could use. Aside from issues regard-
ing Java/OpenCL compatibility, we struggled to find an OpenCL-
compatible way to create on-device managed heaps and subse-
quently objects. The problems arise from the fact that we are being
forced to access device memory via OpenCL buffers while having
no standard way of resolving device-side addresses: either rela-
tive or absolute. Advanced OpenCL features, like Shared Virtual
Memory, could not help solving our problems as this is not, yet,
supported on the majority of devices we used. The main reason
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is that vendors’ support for OpenCL is variable across operating
systems and devices — sometimes getting access to an SDK is near
impossible.

Future work. As future work, we aim to further improve Tor-
nado’s performance by implementing more compiler and runtime
optimizations, such as control-flow minimization, predication, use
of constant memory, and compressed object layouts for objects
residing on the hardware accelerators. We also plan to enable new
object allocation from tasks running on devices other than that run-
ning the JVM host. Furthermore, we plan to extend Tornado’s reach
to more devices and diverse accelerators such as Intel’s Xeon Phi
and FPGAs. We also plan to open-source and release the complete
Tornado JIT compiler and the task-based API in Github, under the
beehive-lab github-organization of the University of Manchester
(https://github.com/beehive-lab/).
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