
Experiences with Building Domain-Specific
Compilation Plugins in Graal

Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, Nikos Foutris, and Mikel Luján

Advanced Processor Technologies Group

School of Computer Science

The University of Manchester

Kilburn Building, Oxford Road

Manchester, UK

M13 9PL

first.last@manchester.ac.uk

ABSTRACT
In this paper, we describe our experiences in co-designing a domain-

specific compilation stack. Our motivation stems from the missed

optimization opportunities we observed while implementing a com-

puter vision library in Java. To tackle the performance shortcomings,

we developed Indigo, a computer vision API co-designed with a

compilation plugin for optimizing computer vision applications.

Indigo exploits the extensible nature of the Graal compiler which

provides invocation plugins, that replace methods with dedicated

nodes, and generates machine code compatible with both the Java

Virtual Machine (JVM) and the SIMD hardware unit. Our approach

improves performance by up to 66.75x when compared to pure

Java implementations and by up to 2.75x when compared to the

original C++ implementation. These performance improvements

are the result of low-level concurrency, idiomatic implementation

of algorithms, and by keeping temporary objects in the wider vector

unit registers.

CCS CONCEPTS
• Software and its engineering→ Just-in-time compilers; Do-
main specific languages; • Computing methodologies → Com-
puter vision;

KEYWORDS
SLAM, Graal, Compiler, JIT, Java

ACM Reference format:
Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, Nikos Foutris, and

Mikel Luján. 2017. Experiences with Building Domain-Specific Compilation

Plugins in Graal. In Proceedings of ManLang 2017, Prague,Czech Republic,
September 27–29, 2017, 12 pages.
https://doi.org/10.1145/3132190.3132207

1 INTRODUCTION
The advent of highly modular and efficient compilers [8, 23] creates

new opportunities in introducing a number of aggressive optimiza-

tions. For example, Graal [8] along with Truffle [45] enable the

ManLang 2017, September 27–29, 2017, Prague,Czech Republic
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
ManLang 2017, September 27–29, 2017 , https://doi.org/10.1145/3132190.3132207.

implementation of multiple languages such as Ruby [39] and R [40]

on top of a unified compilation and runtime stack served by Graal.

In addition, the recent introduction of the JVM Compiler Interface

(JVMCI) [20] enables the exposure of core VM components into the

compiler stack seamlessly.

All the above result in compiler and runtime stacks that are

more modular and efficient than monolithic compilers and virtual

machines (VMs). Although such systems are high-performing, the

level of optimization they perform is still bound by the fact that they

need to work for every case; i.e., the compilation results need to

adhere to the programming language specification and the runtime

system must always be in a consistent state.

Currently, in the process of creating domain-specific optimiza-

tions, a compiler engineer must ensure that the optimization does

not violate the language specifications. Therefore, a natural ques-

tion risen is: Is there an easy way to create domain-specific opti-

mizations without having to learn the whole compilation stack? In

our case, that question formed while trying to implement a Java

version of a computer vision algorithm.

Emerging applications from the computer vision domain are

becoming mainstream in both the embedded and desktop systems’

market [11]. Simultaneous Localization and Mapping (SLAM) ap-

plications aim to perform localization and mapping simultaneously

for a sensor moving through an unknown environment [9, 10, 30].

SLAM algorithms are employed in all kinds of autonomous vehi-

cles, like self-driving cars, drones, autonomous underwater vehicles,

planetary rovers, etc. Nowadays, there is a great focus not only in

analyzing the accuracy of such methods, but also on characterizing

and systematically improving their performance [5].

In the process of creating a portable Java implementation of

LSD-SLAM [9], a specific case of SLAM applications, we noticed

some performance shortcomings related to the efficient execution

of short vector types. We also noticed that we could achieve higher

performance if we could instruct the compiler to force some opti-

mizations even if it could not guarantee that they would be safe in

the general case. Since we possess the domain-specific knowledge

of the algorithm we are developing, we wanted to find a way to

pass that semantic information down to the compiler and alter

assumptions made while optimizing the code.

In particular, LSD-SLAM applications require vector abstractions

that specialize for small vectors (two to seven elements) which

can exploit SIMD instructions with idiomatic usages. To optimize

such operations we create Indigo an API, for such short vectors,

https://doi.org/10.1145/3132190.3132207
https://doi.org/10.1145/3132190.3132207


ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

key-frame-y

key-frame-x

Map Optimization
minimize error in Sim(3) poses

key-frame-x

frame

key-frame-z Sim(3) pose

Depth Estimation
using pose and matched pixels

Tracking
create SE(3) pose from frames

Figure 1: Overview of the LSD-SLAM application.

co-designed with a lightweight compilation plugin for optimizing
computer vision application specialized for classes of small vectors and
matrices. Our approach avoids algorithmic obfuscation through the

short vectors API and allows the optimizing compiler to improve

the execution time of the generated machine code through the

co-designed plugin. Furthermore, we co-design vector and matrix

operations in Javawith the corresponding compiler optimizations in

order to make them compatible with SIMD instructions. To achieve

the above, we exploit Graal’s Invocation Plugin mechanism which

allows us to attach Indigo to the compilation process. Indigo is

then able to extend Graal’s intermediate representation (IR) to

communicate the semantics of the abstraction through the compiler

to the assembler.

In summary, the contributions of this paper are:

• We discuss compiler limitations regarding optimizing a com-

puter vision library.

• We describe our experiences while building Indigo: a com-

puter vision API co-designed with a plug-in for the Graal

compiler to exploit SIMD instructions for commonly occur-

ring computer vision data operations.

• We demonstrate that the optimized Java versions of the LSD-

SLAM kernels can outperform commonly used Java libraries

(by up to 66.75x). Furthermore, we showcase that Indigo, in

most cases, outperforms the C++ implementations of the

LSD-SLAM kernels by up to 2.75x.

The paper is organized as follows: Section 2 provides the details

of the developed LSD-SLAM application and the shortcomings we

encountered while implementing it in Java. Section 3 presents the

Indigo API used for specializing matrix and vector operations of

SLAM applications. Section 4 describes the Indigo compiler plu-

gin, while Section 5 presents our performance evaluation. Finally,

Sections 6 and 7 provide the related work and the conclusions

respectively.

2 BACKGROUND
Simultaneous Location and Mapping (SLAM) is a key algorithm for

robotics and other autonomous devices. SLAM applications, such

as KinectFusion [30], SLAMBench [29], and Large-Scale Direct

Monocular SLAM (LSD-SLAM) [9] perform a 3D reconstruction

of an environment while tracking the location of a camera and

calculating absolute positions of objects. Inputs include monocular

cameras found in commodity web-cams, laser ranging sensors,

or wide-angle time-of-flight cameras as found in the Microsoft

Kinect [27]. SLAM applications are computationally demanding

and often require state-of-the-art GPUs in order to perform the 3D

reconstruction of the environment in real-time. Such algorithms

enable robots and autonomous vehicles to learn the environment

they move in and their position in it. That said, being able to run at

real-time especially on less powerful devices than GPUs is highly

desirable.

2.1 LSD-SLAM
In this work we focus on Large-Scale Direct Monocular (LSD) SLAM

applications. LSD-SLAM in contrast to the feature-based SLAM ap-

plications, instead of using features (e.g., lines, edges, etc.), extracted

by each captured frame, it operates directly on image intensities and

creates point clouds. This approach enables LSD-SLAM to obtain

a much denser map, since it is not limited on corners and straight

line segments, as the feature-based algorithms.

LSD-SLAM, being monocular, takes input from a single camera

and processes the images to reconstruct the 3D environment and

estimate the relative position of the agent in the environment at

real-time. LSD-SLAM models the environment as a pose-graph

consisting of key frames with associated depth maps as nodes. A

pose-graph is a graph where nodes are frames and directed edges

contain the transformations (rotation, scaling, and translation) and

the corresponding covariance matrix from the previous frame.

LSD-SLAM comprises three main components; tracking, depth

estimation, and map optimization. Figure 1 illustrates the inter-

action of the LSD-SLAM components. The tracking component

estimates the location of the camera, processed from an image

(frame), against key frames in a graph. The key frames are used as

a reference, the first being the initial image and, after that, images

that are too far apart in space or tracking has failed against the

previous key frame. LSD-SLAM calculates depth information using

depth estimation, which compares the difference in position of pix-

els in two separate frames. Each key frame maintains its own depth

information and is able to create a point cloud to visualize the envi-

ronment. The last component is map optimization that minimizes

errors in the map of the environment. This includes loop closure

in which disjoint, but neighboring, key frames are associated in

the graph. The three components run in parallel and the feedback

from the depth estimation and map optimization is used to improve

tracking and to update key frame information. In more detail:

Tracking. The tracking phase calculates the relative position

(pose) between frames, which is used to estimate depth and to build

the graph that models the environment map. The tracking task uses

an initial pose (the result of the previous tracked frame) to transform

and project each point in the point cloud of the current key frame

to a pixel in the image. Then, for each point, the transformed point

and the gradient of the pixel are combined to form a vector that

represents a pose. Following this, a residual is calculated from the

photometric error (difference in corresponding pixels) between the

key frame and the current frame. Finally, the calculated pose and

residual are used to construct a system that uses the Levenberg-

Marquardt iterative algorithm [26] to find the best pose. Once the



Experiences with Building Domain-Specific
Compilation Plugins in Graal ManLang 2017, September 27–29, 2017, Prague,Czech Republic

Tracking (40.7%) Depth Estimation (49.4%) misc.

Map Optimisation (3.3%) 

Pose Arithmetic (18.4%)
includes SE(3) Logarithm

Levenberg-Marquardt Update
(40%)

Gradient Interpolation 
(27%)

misc.
Point 

Transform
 (13%)

Figure 2: LSD-SLAM execution time breakdown.

pose

depth 
estimate

Figure 3: The depth estimation task in LSD-SLAM.

best pose is found, the result is attached to the frame and then used

in depth estimation.

Depth Estimation. Depth is computed using stereo estimation;
using two frames and the pose as input to the algorithm. Figure 3

contains a simplified illustration of the process that is taking place.

To achieve this, a point is selected from the point cloud of the

key frame and the pose is used to estimate the equivalent point

in the current frame. A vector is created representing the possible

variation in depths for this second point. Points along with the

length of the created vector are selected and during individual

testing the best match is used to provide the depth. To achieve

this, pixels around each point in both frames are compared and

the pixel with the lowest photometric error (difference in pixel

intensities) is selected. This process is computationally intensive

because each point used has a unique vector based on the pose and

the estimated depth of the point. The majority of the arithmetic

in the implementation of the algorithm is in transforming and

projecting points while testing whether they are within the bounds

of the image. The depth information for each point in the key frame

is used in the tracking algorithm, contributing to the residual.

Map Optimization. The mapping algorithm uses the pose in-

formation between key frames to track points representing the

environment. The key frames, when created, are stored in a graph

using the relative pose to the previous key frame as edges, acting

as constraints during optimization. Over time the errors in tracking

accumulate and may cause a duplication of points in the environ-

ment being mapped. Figure 4 contains the cost-function used to

generate the error that is minimized during the optimization algo-

rithm. It uses the pose concatenation operator (ξi j ◦ ξ jk in Figure 4)

that contains the mapping between Lie groups algebra [15] and the

Hamilton product; two of the SLAM kernels. To reduce the amount

𝜉 ∈ 𝔰𝔢(3)

𝜉𝑘𝑖 ≡ 𝜉𝑘𝑗 ∘ 𝜉𝑗𝑖

≡ log(exp(𝜉𝑘𝑗) ⋅ exp(𝜉𝑗𝑖))

𝐸(𝜉𝑊1
… 𝜉𝑊𝑛

) ≡ ∑ (𝜉𝑗𝑖 ∘ 𝜉𝑊𝑖

−1 ∘ 𝜉𝑊𝑗
)

𝑇

Σ𝑗𝑖
−1 (𝜉𝑗𝑖 ∘ 𝜉𝑊𝑖

−1 ∘ 𝜉𝑊𝑗
)

(𝜉𝑗𝑖,Σ𝑗𝑖)∈𝜀

𝑊ℎ𝑒𝑟𝑒 ∶   𝑊𝑛 = 𝑤𝑜𝑟𝑙𝑑 𝑓𝑟𝑎𝑚𝑒

 

Figure 4: Cost-function of LSD-SLAM’s map optimization.

of computation required, heuristics are implemented within LSD-

SLAM to reduce the number of poses used in the cost-function.

2.2 SLAM Kernels
As described in the previous section, SLAM applications rely heavily

on matrices and vectors. Vectors are used to represent points in the

Euclidean space and also as a concise representation of poses with

up to seven degrees of freedom. The vectors are translated, com-

bined and normalized frequently in all phases of SLAM algorithms.

Another use of vectors is in the quaternions, complex numbers

with a real part and an imaginary vector which are used to encode

rotations and scales. In addition, matrices are mainly used to store

transformations.

In LSD-SLAM, and in SLAM applications in general, operations

on matrices and vectors are frequent. The SLAM kernels mostly

used in LSD-SLAM are presented below, while the contributions of

each kernel to the total execution time of LSD-SLAM are illustrated

in Figure 2.

Point Transform. Points are typically represented by three co-

ordinates (x,y, z). However, there are cases where this is relative to
the current key frame. When comparing pixels, the point is trans-

formed and projected onto the frame image in order to determine

the photometric error. This is achieved by rotating and translat-

ing the point and then projecting it with the camera model. The

rotation is represented as a 3D matrix (or quaternion) while the

translation is represented by a 3D vector. A point is first rotated

with a matrix-vector multiplication resulting in a translation which

is then added as an offset. A projection is a second matrix-vector

multiplication which occurs during tracking and map optimization;

each point of the point cloud is transformed in each iteration.



ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

SE(3) Logarithm. An SE(3) pose is represented as a rotation

and a translation. Since this is a complicated form used in linear

algebra, the Lie group may be transformed to a vector with six

elements. This is achieved by employing the logarithm, and thus,

creating the SE(3) pose. It is a frequent operation, particularly in

map optimization, within LSD-SLAM applications where it forms a

central role in the cost-function.

Gradient Interpolation. Images are represented as a matrix of

pixels; indexed by two co-ordinates (u,v) calculated during point

transform in LSD-SLAM. The exact value is a real number so the

options are to floor the values to use integer indices or to use sub-

pixel resolution by applying interpolation. In the tracking algorithm

of LSD-SLAM, used during the tracking and map optimization

phases, the gradient and luminosity are interpolated to improve the

precision. Convolution is used to obtain the result based on four

vectors multiplied by coefficients derived from the fractional part

of the co-ordinates.

Levenberg-Marquardt Update. LSD-SLAMuses the SE(3) pose

estimation to solve the next estimate of the current frame relative

to the key frame. The Levenberg-Marquardt algorithm [15] is used

since it is a non-linear system that uses the partial differential of

elements in the vector with photometric errors.

2.3 LSD-SLAM in Java
The vanilla implementation of LSD-SLAM contains hand-optimized

code for two architectures [9, 38]; SSE intrinsics for x86 [16] and

NEON assembly for ARM [24]. Furthermore, since SLAM applica-

tions are computationally intensive, they typically require hardware

acceleration [28] on GPGPUs. Providing efficient implementations

of SLAM applications for every GPU device available is a challeng-

ing task when implemented in statically compiled languages such

as CUDA or OpenCL. In such languages, developers need to account

for every possible configuration that the SLAM application might

run on and include in their code base all the hand-tuned parameters

suitable for each specific device; e.g., vector size, thread group sizes,

parallelization schemes, etc.

Implementing algorithms without strict separation between ab-

straction and implementation impedes the ability to develop and

evolve applications quickly, let alone dynamically. The motiva-

tion for an implementation of LSD-SLAM in Java is productivity

and portability. Implementing SLAM applications in a VM-based

language delegates all the decisions regarding hardware specific

configurations to the runtime as showcased in [21, 22]. This way,

we can achieve a single portable SLAM implementation that can

run efficiently across many devices without requiring any code

changes. To achieve this, VMs employ dynamic just-in-time (JIT)

compilation which allows them to optimize the code at runtime.

Existing approaches that specialize in computer vision applica-

tions and matrices in Java use either library wrappers to existing

compiled binaries or create pure Java libraries. However, as shown

in Table 1, neither approach provides the performance of existing

non-Java LSD-SLAM implementations. In Table 1, Eigen [12] is the

original LSD-SLAM implementation written in C++ and optimized

with SIMD instructions. Efficient Java Matrix Library (EJML) [2]

is the basis for existing Java implementations of abstractions for

computer vision, as GeoRegression [3], used by BoofCV [1]. EJML

is used here to represent the pure Java SLAM libraries. JEigen [37]

on the other hand represents the SLAM Java libraries implemented

as wrappers to binary libraries using the Java native interface (JNI)

and/or Java native access (JNA).

We observe that EJML is significantly slower than the original

implementation, and JEigen is two orders of magnitude slower than

the original implementation. We attribute EJMLs performance to

the inability of the dynamic compiler to optimize the computation

intensive parts to the same level as their hand-tuned counterparts.

More details on this issue are provided in Section 3. Regarding

JEigen’s performance, we attribute it to the nature of JNI and JNA.

The use of library wrappers through JNI or JNA comes with the

cost of marshaling and un-marshaling of the data each time the exe-

cution transits from Java to native code and vice versa. Additionally,
the contents of native methods cannot be inlined and optimized as

part of the Intermediate Representation (IR) during compilation.

In this work we port LSD-SLAM to Java using pure Java libraries;

we identify the dynamic compiler limitations and present a com-

piler plug-in that bypasses them and allows the compiler to per-

form equivalent, to the hand-tuned version, optimizations. The

next section presents the specialized Java libraries, discusses the

implementation decisions and their impact on performance, and

identifies the dynamic compiler limitations.

3 INDIGO: SPECIALIZATION OF JAVA
LIBRARIES

Specialization for computer vision libraries in Java is already avail-

able in the GeoRegression library [3] and is based on EJML [2].

EJML uses a Matrix interface, which it implements for various ma-

trix and vector sizes. Each implementation is optimized depending

on the size of the matrix or vector it represents. Small vectors are

represented by classes with the data represented as public, non-

final fields that allow efficient access without the indirection and

boundary checks of Java arrays. However, our experience shows

that the performance of such libraries is still not optimal (see Ta-

ble 1). In this work we create a class collection for small vector

(up to 8 elements) and matrix data types used in LSD-SLAM that

is suitable for use in commonly observed SLAM algorithms. The

design of our library increases the awareness of temporary objects

and their values, thus reducing the interaction with the garbage

collector and consequently improving performance.

Figure 5 presents the class hierarchy of the new library. The

new abstractions introduce implementations for vectors of length

four (AbstractV128) and eight (AbstractV256), as well as, for up
to eight by eight matrices (AbstractM256). Larger vectors, used
to store image data, use existing approaches with data abstraction

based on matrices with meta-data in the form of properties. In our

design we employ strict typing to increase the number of errors

caught during compilation. For example, a point multiplied by a

vector returns a point translated from the original while a vector

multiplied by a vector is another vector. On the other hand, a point

multiplied by a point has no meaning in SLAM applications and

through strict typing can be prevented.



Experiences with Building Domain-Specific
Compilation Plugins in Graal ManLang 2017, September 27–29, 2017, Prague,Czech Republic

Table 1: Mean execution time and standard deviation for the SLAM kernels on different implementations.

Framework Point Transform SE(3) Logarithm Gradient Interpolation L-M Update
mean (ns) s.d. mean (ns) s.d. mean (ns) s.d. mean (ns) s.d.

Eigen 13.342 0.128 131.138 3.046 9.847 0.309 152.376 2.789

EJML 77.411 8.383 415.924 8.450 84.479 1.277 308.412 5.648

JEigen 1356.498 38.164 1671.105 43.373 58.961 0.959 895.845 8.166

<<interface>>

IVector

<<abstract>>

AbstractV128
<<abstract>>

AbstractV256

Tangent7D

Tangent6DTangent4D

Quaternion

Point2D

Vector2D

Point3D

Vector3D

Tangent3D

<<abstract>>

AbstractM128

Transform

Rotation3D

<<abstract>>

AbstractM256

MatrixM
<<interface>>

IMatrix

MatrixS

Figure 5: Class hierarchy of the new Java library.

3.1 Library Optimizations
To achieve increased performance we apply a number of optimiza-

tions on the library implementation. These optimizations enable

the standard Graal compiler to better optimize the code at runtime.

First, as in EJML we use fields instead of arrays to describe the small

vectors. We further encapsulate (add private modifier) the fields

and make them immutable (add final modifier). Encapsulation

has no effect on the performance but allows for future revisions

of the library without braking backwards compatibility. Note that

mutable objects superficially improve performance by allowing op-

erations, e.g. accumulation, without the need to instantiate a new

object on the heap. However, the actual performance improvement

is dependent on the scope of the object maintaining the new value.

The machine code generated by the dynamic compiler will be the

same if the value does not escape the scope of compilation and is

thus placed on the stack instead of the heap. That said, the penalty

of new object creation is eliminated in some cases, while enabling

constant folding. This allows us to:

Reduce object allocation. An object encapsulating an array

will hold at least one reference to an object on the heap (the array).

There is also the likelihood that the vector also contains one or

several objects to provide the necessary data abstraction. As each

object is managed by the garbage collector there is an inherent cost

in allocating memory for it (and later in its collection).

Reduce memory indirection. Each object reference is another

level of indirection, the value of which is not fixed as it may move

in physical memory. Therefore, it is not simply optimized by a base

address and offset, the indirection must be followed each time. By

expanding the array to primitive types, the elements of the vector

become an offset from the object base address.

Enable constant folding. An array in Java is mutable; there is

nothing preventing an array value from being modified. Our imple-

mentation enforces immutability, thus enabling constant folding

which allows the propagation and replacement of variables with

constant values in expressions, improving performance.

Enhance common sub-expression elimination. Establishing
data dependencies when arrays are involved is not trivial and oc-

casionally impossible. By eliminating the indirection and simplify-

ing the values as primitive types, we enable existing optimization

phases of the compiler to be more aggressive as primitive types are

more predictable in their nature.

3.2 Compiler Limitations
Compilers perform several optimization passes where each pass

may enable more optimizations. One of the most common enablers

for further optimization is inlining. Due to the dynamic nature

of Java, inlining of methods enables specialization and thus more

optimizations. Not inlined methods cannot be optimized to the

same extend since depending on the invocation context they might

behave differently, especially in dynamic programming languages.

In our case the main inhibitor in the dynamic compiler preventing

the full inlining and optimization to use only registers in algorithms,

as generated by C++, is the implementation of interfaces as these

may be unknown at runtime. The best the compiler can do is to

invoke a method directly but it is not possible to optimize across

this boundary. As a result, opportunities for constant folding and

sub-expression elimination are missed resulting in sub-optimal

machine code generation. Although it is possible to write code that

is efficiently compiled (e.g. manually inline some segments), it is

not considered a good practice since functionality is obfuscated or

specialized without due consideration for other uses.

Section 4 addresses inefficiencies arising from compiler sensi-

tivity by implementing a compiler plugin, co-designed with our

library, that maximizes the compiler’s capabilities. Our approach

also augments the dynamic compiler with semantics of small vec-

tors allowing it to utilize hardware support for vector operations,

further improving performance. These transformations result in

dynamically generated machine code equivalent to that generated

from the hand-optimized C++ libraries.

4 INDIGO: SPECIALIZATION OF DYNAMIC
COMPILERS

In this section, we present the co-designed, with our library, modi-

fications to the optimizer. The presented optimizations remove the



ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

overheads associated with the encapsulation and indirection of op-

erations suitable for vectorization. We also extend the co-designed

methodology to allow Java to utilize the vector unit for simple

operations and also instruction sequences developed over time in

the SIMD application research.

4.1 The Graal Compiler
The Graal compiler [8], currently integrated in JDK 9 through the

JVM Compiler Interface (JVMCI) [20], is a highly modular and effi-

cient compiler used not only for the compilation of Java programs

but also for other dynamic programming languages running on top

of Truffle [45]. Graal is written in Java and employs a hierarchi-

cal way of optimizing code through its tiers; High, Mid, and Low.

Initially, an Intermediate Representation (IR) graph is created by

parsing the bytecodes from a class file. The Graal IR contains both

control and data dependencies and utilizes the method as its level

of compilation abstraction. Within Graal, the IR is maintained as a

structured graph with nodes representing actions or values while

edges represent their dependencies. Consequently, the generated IR

graph is being optimized and lowered iteratively until final machine

code emission.

A key feature of Graal is the Invocation Plugins. These allow the

addition or replacement of method invocations with IR subgraphs

created during the graph building phase in Graal. We could poten-

tially leverage Invocation Plugins directly through Graal in order

to optimize our Indigo API. However, this was complex since:

• There is no publicly accessible SIMD assembler in Graal.

• Linear scan based register allocation leads to sub-optimal

usage in SLAM-like algorithms.

• Since the JVM does not support SIMD instructions, it cannot

handle them during register spillage.

The aforementioned reasons necessitated significant engineer-

ing effort in order to reach our implementation targets since we

would have to extend a production quality JVM to augment it with

all the necessary functionality. In contrast, our objective was to

achieve a fast and lightweight implementation of our compilation

chain, optimizing our computer vision application without having

to worry about completeness issues. As a result, we implemented

the Indigo compilation stack explained below (Section 4.1).

4.2 Extending The Graal Compiler
Indigo uses a single node plugin that contains its own domain-

specific compiler stack. The major benefit of this approach is that it

has runtime independence from Graal. Therefore, it can be down-

loaded and used as a standalone library that, should the JVM imple-

ment Graal on top of the JVMCI, SIMD instruction emission can be

generated. The compiler stack contains a basic graph builder, opti-

mizer, register allocator, and code generator with a scope limited

for its target domain; SLAM applications. The outline of Indigo as

well as its interactions with Graal and the JVM, through the JVMCI,

are illustrated in Figure 6.

As shown in Figure 6, the LSD-SLAM application has been im-

plemented by using the specialized Indigo API. Upon invoking the

application, the Indigo plugin is launched and registers its Invo-

cation plugins through the Graal Specialization class. This class,

calls the JVMCI and registers “magic” Indigo Nodes to be added in

Graal’s IR. The added Inigo Nodes, are then retrieved and expanded

by the Indigo plugin. Typically, each “magic” Indigo Node repre-

sents an operation to be performed on the short vector and matrix

classes of the Indigo API.

Consequently, the IndigoNodes are being expanded by the Indigo

plugin and specialized IR graphs are being appended to Graal’s IR.

The expansion of the Indigo Nodes, create more specialized Indigo

Nodes which extend typical node types found in Graal’s IR (e.g.

FixedWithNextNode). The newly added nodes, are then treated like
typical Graal IR nodes and are lowered iteratively until machine

code is produced.

Indigo currently uses a number of phases of standard Graal. All

Indigo nodes for example inherit from FixedWithNextNode node
while implementing the lowering interfaces. Regarding optimiza-

tions, Indigo uses its own internal ones such as DeadCodeElimination,
DotProductRewrite etc. However Indigo’s optimizations can not

be used from within standard Graal.

The Indigo node is generated during the graph building of the

compilation or indirectly during inlining. Figure 7 illustrates how

this appears; all nodes in the figure are inserted during the Invoca-

tion Plugin. Once a graph is constructed, it is transformed during

the optimization phases by exploiting canonicalization and sim-

plification to merge with other nodes. This allows us to maximize

the number of operations in the node and eliminate new instance

nodes from the graph, leaving the data in registers. A simplification

phase traverses the operand edges of the Indigo node to detect other

Indigo nodes and merges the internal operation graphs together

and with Graal.

4.3 Extending Graal for Vectors
Implementing Indigo as a separate compilation plugin for Graal,

helped us optimize the Indigo API by enabling all the optimizations

described in Section 3.1. In addition, Indigo has been designed to

inline all methods implemented in sub-classes of the AbstractV128,
AbstractV256, AbstractM128 and AbstractM256 abstract classes.

A key motivation factor of the presented research was the absence

of a publicly available SIMD code generator for Graal. Therefore,

as depicted in Figure 6, Indigo employs a pluggable SIMD compiler

backend that currently implements the SSE instruction set.

Figure 8 contains a simplified overview of the graph within the

Indigo node and the transformations that take place until SIMD

code is generated. In the given example, lhs = P(1), rhs = P(2)
and the result are new instances of the Vector3D class. When the

Indigo node is lowered to the low-level IR used by Graal, the node

must claim virtual registers from Graal. At this point we lower

the operation to a generic SIMD instruction to be scheduled while

profiling the register requirements. In order to maintain the vanilla

implementation of Graal, we indirectly use its register allocator

to provide general purpose and vector registers by claiming LIR

values to satisfy the requirements of the profile. Later, these will

be converted into physical registers during the back end phases.

The use of profiling enables us to offload the allocation algorithms

to Graal, while ensuring that no vector registers are spilled to the

stack. This technique guarantees that the JVM will not enter un-

recoverable states while being spatially more efficient.



Experiences with Building Domain-Specific
Compilation Plugins in Graal ManLang 2017, September 27–29, 2017, Prague,Czech Republic

Java Virtual Machine

Graal

Runtime 

Garbage Collection

JV
M

C
I

Register Invocation Plugins 

Methods

LSD-SLAM application

Indigo: Vector | Matrix API

Indigo: Compilation Plugin

Indigo Node Plugins

Expand to Indigo IR

(lowering, shedulling, etc.)

Indigo Backend: 

SSE, AVX, NEON

Extend Graal Nodes

Nodes’ implementation

overriding Graal’s methods

Graal Specialization

Indigo Nodes

Read Indigo “Magic” Nodes

Pluggable SIMD Backend

Indigo Register Allocation

Indigo LIR Nodes

Indigo ASM Emission

Figure 6: Indigo compilation plugin outline.

16 | [magic]

14 | New Vector3D

15 | Address Offset 12 | Address Offset 13 | Address Offset

P(1) P(2)

Figure 7: Illustration of an Indigo node within the Graal IR.

The other change is to use a macro-substitution for the get meth-

ods of the Indigo API. This allows accessed values to be used directly

if constant indices are used and offset-based access if the index is

variable. This moves the implementation for the field access away

from software but still retaining direct access when compiled.

The vanilla implementation of LSD-SLAM contains hand-tuned

code for x86 and ARM architectures, relying on SSE intrinsics for

x86 and NEON assembly for ARM. Each manual optimization uses

the 128-bit vector unit registers, directly or indirectly, in source code

to increase the performance of regular data algorithms. The use of

vector instructions is limited to the tracking phase of LSD-SLAM.

Although, the tracking phase is greatly influencing performance,

it is observed from Java profiling that other parts of the applica-

tion take advance of SIMD execution. The main restriction of this

approach is that in order to apply it manually, developers have to

change the source code in three different locations using different

syntax; thus, increasing the risk of errors.

&lhs &rhs

&result

MOVE MOVE

ADD

MOVE

&lhs &rhs

&result

MOVE MOVE

ADD

MOVE

&lhs &rhs

&result

MOVE MOVE

ADD

MOVE

&lhs &rhs

&result

MOVUPS MOVUPS

ADDPS

MOVUPS

Register

Profiling

Code

Generation

Register

Allocation

r0 r1

r2

1 2

1

xmm0 xmm1 xmm0 xmm1

xmm0 xmm0

2

2

regs = 2

Figure 8: Simplistic illustration of the internal state of the
Indigo node from initial creation to the code generation.

The objective of vectorization is to reduce the distance between

vector operations in the IR enabling further optimizations through



ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

virtualization
1
. With the use of virtualization, provided by Graal’s

escape analysis, we can maintain temporary vectors entirely in the

registers of the targeted architectures. The addresses of the vectors

are being used for reading and writing enabling us to break free

from the primitive Java types and, more importantly, from the use

of arrays. However, since this is not an inherent safe usage of the

Java semantics we made the following assumptions:

• Hardware supports 128-bit vector operations, true for ARM

NEON and Intel SSE implementations.

• The implementations of the abstract classes AbstractV128
and AbstractM128 contain four single-precision floating

point numbers suitable for vector operations in SLAM.

• Unused elements of a vector are zero.

• The elements of a vector are contiguous in memory.

• Once constructed, a vector is immutable.

While the assumptions dictate the implementation of the base

classes in the library, they allow some of the restrictions in Java

to be eliminated (e.g, zeroing the fields of a newly created object).

This enables the IR to be extended and optimized more aggressively

since the semantics are now within the vector abstraction and not

within the general purpose language.

5 EVALUATION
The objectives of this section are to validate the correctness and as-

sess the performance of Indigo by following a two-stage evaluation

process.

First, we evaluate Indigo as a generic small vectors and matrices

Java library, and compare it against the Apache Commons Mathe-

matics Library (CML) [42] which is a library of mathematics and

statistics components complementary to the built-in Java libraries.

Second, we evaluate Indigo as a SLAM specific library and com-

pare it against alternative implementations using the SLAM kernels

extracted from LSD-SLAM.

Evaluation Setup: Table 2 presents the hardware and software

configurations used for the evaluation of Indigo. The Java Virtual

Machine (JVM) used is the standard version distributed by Ora-

cle [33] built with Graal [32] as its optimizing compiler. Each test is

using the Java Micro-benchmark Harness (JMH) [34] with the de-

fault settings (10 forks run sequentially with 20 warm-up iterations

and 20 measurement iterations). The performance is measured in

operations (time to execute the annotated methods) per second

(op/s) and contains the standard error also generated by JMH. Fi-

nally, the Apache CML version used is 3.6.

5.1 Arithmetic Operations
To evaluate Indigo as a small vectors and matrices library we em-

ploy an extended set of arithmetic operations on small vectors and

matrices. Namely, the full set of vector operations are:

• Addition (®a + ®b),

• Cross Product (®a × ®b),
• Scalar Divide (®ab−1),

• Dot Product (®a · ®b),
• Hamilton Product (Q1 ∗Q2),

1
The act of performing scalar replacement to object fields.

Table 2: Configurations used during performance evalua-
tion.

Hardware

Processor Intel Core i7 4770 3.4GHz

Cores 4

Hardware threads 8

L1 Cache 32kB per core

L2 Cache 256kB per core

L3 Cache 8MB per 4 cores

Main memory 16GB

Vector Units SSE 4.2 and AVX2

Software

OS Windows 8.1

C++ compiler MSVC 17.00.61030 (x64)

JVM Java SE 1.8.0_72 64-Bit JVMCI VM

Baseline Apache CML 3.6

• Scalar Multiply (®ab), and

• Subtraction (®a − ®b).

While the matrix operations are:

• Addition (A + B),
• Scalar Division (Ab−1),
• Scalar Multiplication (Ab),

• Vector Multiplication (A®b),
• Matrix Multiplication (AB), and
• Subtraction (A − B).

These operations are used throughout the LSD-SLAM implemen-

tation of our case study as well as other SLAM applications and the

bodytrack benchmark in the PARSEC benchmark suite [4].

Table 3 contains the results of our evaluation on arithmetic

operations. Regarding the tested configurations:

• Apache CML represents the execution times of JMH using

Apache CML compiled with the Graal compiler.

• Indigo represents the execution times of JMH using Indigo

compiled with the Graal compiler with SIMD generation

deactivated in the compiler plugin.

• Indigo-SIMD represents the execution times of JMH us-

ing Indigo with the Graal compiler with SIMD generation

activated in the compiler plugin.

5.1.1 Vector Operations. Figure 9 illustrates the relative perfor-
mance of the Indigo library, with and without SIMD instructions

against Apache CML, during vector processing. Regarding Indigo

without SIMD enabled, performance exceeds Apache CML (from

1.15x up to 7.68x) in all operations except division. This is because

in Apache CML there is no divide operation so we essentially per-

form a multiplication of the inverse of the scalar. This reflects the

difference in latency between the division and multiplication in

the Intel SIMD SSE instruction set [17] and a reason why division

is more generally avoided. Regarding cross and dot products, In-

digo outperforms Apache CML by a great margin (6.13x and 7.68x

respectively) because Apache CML prioritizes precision over per-

formance [31] (double versus single precision). In LSD-SLAM the



Experiences with Building Domain-Specific
Compilation Plugins in Graal ManLang 2017, September 27–29, 2017, Prague,Czech Republic

Table 3: Throughput, as 106 op/s, of matrix and vector operations of Apache CML, Indigo, and Indigo-SIMD.

Type Operation Apache CML Indigo Indigo-SIMD
mean s.d. mean s.d. mean s.d.

Indigo
Apache

Indigo-SIMD
Apache

Indigo-SIMD
Indigo

Vector Addition 220.702 0.310 263.794 0.406 281.439 0.456 1.20 1.28 1.07

Cross Product 43.509 0.635 266.653 0.389 281.125 0.340 6.13 6.46 1.05

Scalar Division 216.712 0.302 139.626 0.104 282.410 0.309 0.64 1.30 2.02

Dot Product 78.231 0.034 600.595 1.733 769.142 6.723 7.68 9.83 1.28

Hamilton Product 169.256 0.290 194.842 0.251 275.617 0.706 1.15 1.63 1.41

Scalar Multiplication 221.741 0.314 269.654 0.550 282.133 0.311 1.22 1.27 1.05

Subtraction 220.868 0.327 262.915 0.377 281.634 0.398 1.19 1.28 1.07

Matrix Addition 3.451 0.012 66.397 0.720 80.999 3.274 19.24 23.47 1.22

Scalar Division 3.426 0.007 46.370 0.919 71.073 1.685 13.53 20.74 1.53

Scalar Multiplication 3.343 0.012 65.068 1.514 74.791 2.650 19.46 22.37 1.15

Vector Multiplication 3.610 0.010 104.745 1.270 240.963 5.484 29.02 66.75 2.30

MatrixMultiplication 2.538 0.017 47.892 0.184 77.673 2.910 18.87 30.61 1.62

Subtraction 3.431 0.011 63.996 1.811 82.935 3.142 18.65 24.17 1.30

0

1

2

3

4

5

6

7

8

9

10

Addition Cross
Product

Scalar
Division

Dot	
Product

Hamilton
Product

Scalar
Multiplication

Subtraction

Sp
ee
du
p	
(v
s	
Ap

ac
he
	C
M
L)

Indigo Indigo-SIMD

Figure 9: Speedup of Indigo vectors vs Apache CML.

0

0.5

1

1.5

2

2.5

Addition Cross
Product

Scalar
Division

Dot	
Product

Hamilton
Product

Scalar
Multiplication

Subtraction

Sp
ee
du
p	
(In

di
go
-S
IM

D	
vs
	In
di
go
)

Figure 10: Speedup of Indigo vectorswith SIMD instructions.

usage of double precision instead of single precision does not affect

the accuracy of the algorithm and since Indigo has been designed

for that use case, we use single precision arithmetic.

Regarding Indigo with SIMD enabled, in all cases Indigo-SIMD

outperforms the Apache CML (from 1.27x up to 9.83x). Even in the

vector division operation, Indigo-SIMD is 1.30x faster than Apache

CML. Both configurations (Indigowith/without SIMD enabled) have

exactly the same number of object instantiations during execution

0

10

20

30

40

50

60

70

Addition Scalar
Division

Scalar
Multiplication

Vector
Multiplication

Matrix
Multiplication

Subtraction

Sp
ee
du
p	
(v
s	
Ap

ac
he
	C
M
L)

Indigo Indigo-SIMD

Figure 11: Speedup of Indigo matrices vs Apache CML.

(in our benchmark we instantiate only one object). The relative

performance of Indigo-SIMD against Indigo, as shown in Table 3

and Figure 10, extends from 1.05x up to 2.02x, with division and

the Hamilton product to be the best performing.

5.1.2 Matrix Operations. Figure 11 illustrates the relative per-
formance of the Indigo library, with and without SIMD instructions

against Apache CML, during matrix processing. Regarding Indigo

with SIMD disabled, performance exceeds Apache CML in all cases

by great margins, from 13.53x up to 29.02x. The main reason be-

hind that is the data abstractions employed. Since Apache CML

uses arrays of arrays (double[][]) to store data, more indirection

(when reading elements) is being added in comparison to the field-

based approach of Indigo. This limits the efficiency of arithmetic

operations due to the use of loops during data accesses. This in-

efficiency highlights the fact that a general solution to a specific

domain is not always applicable. Small vector and matrix opera-

tions, heavily utilized in the computer vision domain, require a

more domain-specific approach as showcased by Indigo. When en-

abling SIMD code generation, the performance gains become even

higher ranging from 20.74x up to 66.75x.

Furthermore, as shown in Table 3 and Figure 12, the advantages

of using SIMD generation are significant ranging from 1.15x up to



ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

0

0.5

1

1.5

2

2.5

Addition Scalar
Division

Scalar
Multiplication

Vector
Multiplication

Matrix
Multiplication

Subtraction

Sp
ee
du
p	
(In

di
go
-S
IM

D	
vs
	In
di
go
)

Figure 12: Speedup of Indigo matrices with SIMD instruc-
tions.

0

0.5

1

1.5

2

2.5

3

Point	Transform SE(3)	Logarithm Gradient	Interpolation L-M	Update

Sp
ee
du
p	
(v
s	
Ei
ge
n)

Indigo	(w/o	Graal	extensions) Indigo-SIMD

Figure 13: Speedup of Indigo over Eigen.

2.30x compared to non-SIMD Indigo. The matrix-vector multiplica-

tion is the best performing operation. This is because it has been

targeted by design, specifically for SIMD instructions, in part to

optimize point project, a very frequently executed SLAM kernel.

Therefore, the data is column major so that matrix-vector multipli-

cation may use a more efficient sequence of SIMD instructions.

5.2 SLAM Kernels
In order to factor out parts of LSD-SLAM that do not exercise

vector or matrix operations, we extracted the kernels of interest

(see Section 2.2) from the application and thoroughly tested their

performance characteristics. These SLAM kernels explore a number

of the performance shortfalls of the LSD-SLAM implementation in

Java, and represent frequently occurring algorithms that use small

vector data types commonly found in the computer vision domain.

They aim to demonstrate the overhead and optimizer inefficiencies

when dealing with mutable types that are not well encapsulated.

In order to demonstrate the effectiveness of Indigo, without the

benefits of SIMD execution, we compare it against the C++ based

Eigen library using the SLAM kernels. The results are presented

in Figure 13, where the y-axis is the speedup of Indigo over Eigen.

For more detail we present the speedup of both Indigo as a pure

Java library (just the API), without the Graal extension, and as the

presented co-designed approach. In three out of the four tested

SLAM kernels, the original implementation of vectors for LSD-

SLAM were slower than the C++-based Eigen library. The use of

encapsulation and immutability led to lower performance than

EJML, a comparable library. However when used with the Graal

extension, Indigo manages to outperform Eigen in three out of the

four kernels.

Table 4 contains the absolute throughput of the SLAM ker-

nels when built using Indigo. The results can be divided into two

groups: those that utilize constants, SE(3) Logarithm and Levenberg-
Marquardt Update; and those that utilize variables, Point Transform
and Gradient Interpolation. As seen, only the second group exhibits

performance improvements ranging from 1.33x up to 1.77x.

Regarding the first group of kernels, by inspecting the code gen-

erated by the Graal compiler for the SE(3) Logarithm we discovered

that the main inefficiency lies in the creation of the hat of the SO(3)
Lie group. It is a 3 × 3 matrix containing only three unique values

(ignoring signs). Despite the low-level concurrency by using SIMD

instructions, constant folding and common sub-expression elimi-

nation out-performs the approach of using SIMD. This is because

the arithmetic is simplified and therefore Indigo can not employ

its optimizations. This, in part, is the reason behind the numer-

ous hand-optimizations found in C++ implementations of SLAM

applications [9, 10, 12, 30].

5.3 Discussion
In conclusion, all operations for 128-bit based data structures ex-

hibit performance improvements. In comparison to the Apache

CML, Indigo demonstrates the advantage of specializing for a spe-

cific domain; computer vision in particular. Indigo allowed the

exploitation of domain-specific knowledge in order to provide a

set of specific optimizations as a novel compiler plugin. Building

compilation plugins for domain-specific languages, can potentially

create a collection of pluggable and customizable compilers built

for specific purposes packaged as downloadable components.

6 RELATEDWORK
Accelerating software with SIMD instructions has been imple-

mented for Java in a number of different ways. For computer vision,

offloading computation to native code and to GPUs are subject

to ongoing research while there is also work in adding automatic

vectorization in optimizing compilers.

6.1 Pure Java Implementations
There is an underlying prejudice against Java for scientific com-

puting because it needs to ‘warm up’. However, such studies have

been performed while JVMs were still in their infancy. Boisvert

et al. explored best practices for, and proposed uses of Java in this

environment. However, as JVMs were running as interpreters for

bytecode, the performance fell short of what was expected by For-

tran and C/C++ developers in scientific computing. This overview

Table 4: Throughput, as 106 op/s, of SLAMKernels in Indigo.

Operation Indigo Indigo-SIMD
mean s.d. mean s.d.

Indigo-SIMD
Indigo

Point Trans. 132.86 1.03 234.52 7.26 1.77

SE(3) Log 9.46 0.03 4.07 0.04 0.43

Gradient 157.56 0.88 209.13 6.73 1.33

L-M Update 1.72 0.05 1.64 0.00 0.95



Experiences with Building Domain-Specific
Compilation Plugins in Graal ManLang 2017, September 27–29, 2017, Prague,Czech Republic

followed the implementation of JAMA [13], a small library that

demonstrated matrix decomposition with the encapsulation of an

array of arrays in a Matrix class. The matrix abstraction introduced

by JAMA evolved into implementations that provided a more com-

prehensive set of features for the scientific computing domain.

OoLaLa [25] is a library for matrix-based numerical methods in

Java with additional data abstraction, separating a matrix from its

data representation and properties. The added abstraction allows

implicit specialization for numerical methods, enabling better per-

formance without burdening the user. The separation of storage

also allows packed data for special matrices, such as lower triangu-

lar or bi-diagonal, that are exploited by specialized execution paths.

It also allows extensions for blocking and distributed execution as

in Colt [14] and Parallel Colt [44].

6.2 Native Libraries
The library used to represent matrices and vectors in LSD-SLAM

and the underlying д2o map optimization is Eigen [12]. It is de-

veloped as a portable library for matrix-based numerical methods

in C++, with support for the geometry in computer vision algo-

rithms. Since it is implemented as C++ header files, it must be

compiled for each use as there is no binary that may be linked

statically or dynamically. The Sophus library [41] extends Eigen to

provide the abstractions for poses and their associated Lie groups

and algebra [15]. Over its history, it has been hand-optimized with

aggressive use of meta-language templates and use of Intel SSE

intrinsic methods to specialize for commodity hardware. Eigen

contains efficient implementations of many algorithms used in sci-

entific computing with an expressive, yet highly customizable data

abstraction. JEigen [37] is a wrapper for the Eigen library, compiled

as a binary, for Java. It accesses the library using Java Native Access

(JNA) [43] as a way to interact with native code without using Java

Native Interface (JNI) with its deficiencies. Another frequently used

library in computer vision is OpenCV [19]. Similarly to Eigen, there

is a wrapper for the binaries to allow access from within Java [18].

6.3 Vectorization and GPU Offloading
There are three concerns involved in programming with vectors for

computer vision applications; a consistent abstraction, optimiza-

tions, and hardware utilization. To achieve all three is extremely

difficult, particularly the support for optimization of a high-level

abstraction for a specific hardware platform. The most common

approach to exploit SIMD instructions in Java is to create a native

library and use JNI to interact with it directly. Parri et al. created a

re-targetable library to achieve this; however the peak speedup is

reported for vectors of length 50,000 and above.

As OpenCV makes use of SSE instructions, all wrappers for Java

naturally make use of them. However, this is a fixed behaviour

and does not exploit the hardware available to the JVM. The real

restriction of this approach is that the contents of native meth-

ods cannot be inlined and optimized as part of the Intermediate

Representation (IR) during compilation. Also, there is no ability to

prevent allocation of the vector in the heap which is another source

of inefficiency in vectorizing libraries and, therefore, not applicable

to SLAM applications.

Another approach used by Project Sumatra [35] and Jacc [7] use

the Java dynamic compiler to write kernels for GPUs using OpenCL,

CUDA, PTX or HSAIL. These are able to transform Java code into

applications that may be applied to data accessible to the GPU

or other supported hardware accelerators. Again the limitation is

the overhead in transferring data to the computational resources

where it is needed. Another restriction is complex control flow

with unpredictable behavior, a feature commonly found in SLAM

applications.

7 CONCLUSION AND FUTUREWORK
SLAM applications are of interest within the computer vision do-

main. LSD-SLAM, demonstrated on workstations and mobile de-

vices, is a type of SLAM application that maps an environment

whilst calculating the location of a camera. To optimize such appli-

cations we introduce Indigo; an API, for small vectors and matrices,

co-designed with a lightweight compilation plugin for optimizing
computer vision application specialized for classes of small vectors and
matrices. We showcased that Indigo accelerates the performance of

SLAM kernels compared to off-the-shelf general libraries (by up to

66.75x). To achieve that, two novel techniques were proposed: (a)

a carefully designed library that supports a specific domain with

the knowledge of how the existing optimizing compiler operates;

and (b) exploitation of the vector units to further accelerate kernels

by emitting SIMD instruction from within a novel compiler plugin.

This demonstrates the applicability to add domain-specific knowl-

edge to a runtime, simplifying the abstraction and improving the

performance.

The Indigo library is the first step towards achieving higher-

performing domain-specific compilers. Regarding future work, we

are planning to develop several new optimizations within the Indigo

compiler plug-in. Such as avoiding field initialization writes and

further escape analysis opportunities. Finally, we plan to explore

the effectiveness of Indigo on other application domains.

ACKNOWLEDGMENTS
This work is partially supported by the EPSRC grants Anyscale

EP/L000725/1, PAMELA EP/K008730/1, and the EU Horizon 2020

ACTiCLOUD 732366 grant. Mikel Luján is funded by a Royal Society

University Research Fellowship.

REFERENCES
[1] Peter Abeles. 2017. BoofCV Project Website.

http://boofcv.org/index.php?title=Main_Page. (2017).

[2] Peter Abeles. 2017. Efficient Java Matrix Library Project Website.

https://github.com/lessthanoptimal/ejml. (2017).

[3] Peter Abeles. 2017. Geometric Regression Library Project Website.

http://georegression.org/. (2017).

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC Benchmark Suite: Characterization and Architectural Implications. In

Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques. 72–81.

[5] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind

Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy Nisbet,

Mikel Lujan, Björn Franke, Paul H.J. Kelly, and Michael O’Boyle. 2016. Integrating

Algorithmic Parameters into Benchmarking and Design Space Exploration in

3D Scene Understanding. In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation (PACT ’16). ACM, New York, NY, USA,

57–69. https://doi.org/10.1145/2967938.2967963

[6] Ronald F. Boisvert, José Moreira, Michael Philippsen, and Roldan Pozo. 2002. Java

and Numerical Computing.

http://boofcv.org/index.php?title=Main_Page
https://github.com/lessthanoptimal/ejml
http://georegression.org/
https://doi.org/10.1145/2967938.2967963


ManLang 2017, September 27–29, 2017, Prague,Czech Republic C. Barrett et al.

http://www.javagrande.org/leapforward/cacm-ron.pdf. (2002).

[7] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján. 2017. Boost-

ing Java Performance using GPGPUs. In Proceedings of the 30th International
Conference on Architecture of Computing Systems (ARCS ’17).

[8] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wim-

mer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative

Intermediate Representation. In Proceedings of the Second Asia-Pacific Program-
ming Languages and Compilers Workshop.

[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-Scale

Direct Monocular SLAM. In Computer Vision – ECCV 2014. Lecture Notes in
Computer Science, Vol. 8690. 834–849.

[10] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. 2014. SVO: Fast Semi-

Direct Monocular Visual Odometry. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation. 15–22.

[11] Google. 2017. Google Project Tango.

https://get.google.com/tango/. (2017).

[12] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen Website.

http://eigen.tuxfamily.org. (2010).

[13] Joe Hicklin, Cleve Moler, Peter Webband, Ronald F. Boisvert, Bruce Miller, Roldan

Pozo, and Karin Remington. 2000. Jama: A Java Matrix Package Project Website.

http://math.nist.gov/javanumerics/jama/. (2000).

[14] Wolfgang Hoschek. 2004. Colt Project Website.

http://dst.lbl.gov/ACSSoftware/colt/. (2004).

[15] James E. Humphreys. 1994. Introduction to Lie Algebras and Representation Theory.
Springer, Inc.

[16] Intel. 2017. Intel 64 and IA-32 Architectures Software Developer’s Manual.

http://www.intel.com. (2017).

[17] Intel, Inc. 2015. Intel Intrinsics Guide Website.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/. (2015).

Online; last accessed 31-August-2015.

[18] Itseez, Inc. 2015. OpenCV for Java Website.

http://opencv.org/opencv-java-api.html. (2015).

[19] Itseez, Inc. 2015. OpenCV Project Website.

http://opencv.org/. (2015).

[20] JEP 243: Java-Level JVM Compiler Interface 2016. JEP 243: Java-Level JVM Com-

piler Interface. http://openjdk.java.net/jeps/243. (2016). [Online; last accessed

1-Feb-2016].

[21] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John

Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime Systems: A

Computer Vision Case Study. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’17). ACM, New

York, NY, USA, 74–82. https://doi.org/10.1145/3050748.3050764

[22] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nisbet, John Mawer,

Will Toms, James Clarkson, Cosmin Gorgovan, Amanieu d’Antras, Yaman Cak-

makci, et al. 2015. Project Beehive: A Hardware/Software Co-designed Stack for

Runtime and Architectural Research. arXiv preprint arXiv:1509.04085 (2015).
[23] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.

http://dl.acm.org/citation.cfm?id=977395.977673

[24] ARM Ltd. 2017. NEON.

https://developer.arm.com/technologies/neon. (2017).

[25] Mikel Luján, T. L. Freeman, and John R. Gurd. 2000. OoLaLa: an Object Oriented

Analysis and Design of Numerical Linear Algebra. In Proceedings of the 15th ACM
SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and
Applications. 229–252.

[26] Donald W. Marquardt. 1963. An Algorithm for Least-Squares Estimation of Non-

linear Parameters. Journal of the Society for Industrial and Applied Mathematics
11, 2 (1963), 431–441.

[27] Microsoft, Inc. 2015. Kinect Website.

https://www.microsoft.com/en-us/kinectforwindows/. (2015).

[28] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H. J.

Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle, Graham Riley,

Nigel Topham, and Steve Furber. 2015.. Introducing SLAMBench, a performance

and accuracy benchmarking methodology for SLAM. In ICRA.
[29] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H. J.

Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle, Graham D. Riley,

Nigel Topham, and Steve Furber. 2015. Introducing SLAMBench, a performance

and accuracy benchmarking methodology for SLAM. In Proceedings of the 2015
IEEE International Conference on Robotics and Automation. 5783–5790.

[30] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David

Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and

Andrew Fitzgibbon. 2011. KinectFusion: Real-Time Dense Surface Mapping and

Tracking. In Proceedings of the 10th IEEE International Symposium on Mixed and
Augmented Reality. 127–136.

[31] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. 2005. Accurate Sum and

Dot Product. SIAM J. Sci. Comput 26, 6 (2005), 1955–1988.
[32] Oracle, Inc. 2015. Graal Project Website.

http://openjdk.java.net/projects/graal/. (2015).

[33] Oracle, Inc. 2015. Java SE.

http://www.oracle.com/technetwork/java/javase/overview/index.html. (2015).

[34] Oracle, Inc. 2016. Java Microbenchmark Harness Website.

http://openjdk.java.net/projects/code-tools/jmh/. (2016).

[35] Oracle, Inc. 2016. Project Sumatra Website.

http://openjdk.java.net/projects/sumatra/. (2016).

[36] Jonathan Parri, John-Marc Desmarais, Daniel Shapiro, Miodrag Bolic, and Voicu

Groza. 2010. Design of a Custom Vector Operation API Exploiting SIMD Intrinsics

within Java. In Proceedings of the 23rd Canadian Conference on Electrical and
Computer Engineering. 1–4.

[37] Hugh Perkins. 2015. JEigen Website.

https://github.com/hughperkins/jeigen. (2015).

[38] Thomas Schöps, Jakob Engely, and Daniel Cremers. 2014. Semi-Dense Visual

Odometry for AR on a Smartphone. In Proceeding of the 13th IEEE International
Symposium on Mixed and Augmented Reality. 145–150.

[39] Chris Seaton. 2015. Specializing Dynamic Techniques for Implementing the Ruby
programming language. Ph.D. Dissertation. University of Manchester.

[40] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016. Optimizing

R Language Execution via Aggressive Speculation. SIGPLAN Not. 52, 2 (Nov.

2016), 84–95. https://doi.org/10.1145/3093334.2989236

[41] Hauke Strasdat. 2015. Sophus Project Website.

https://github.com/strasdat/Sophus. (2015).

[42] The Apache Software Foundation. 2017. Commons Math: The Apache Commons

Mathematics Library.

https://commons.apache.org/proper/commons-math/. (2017).

[43] Timothy Wall. 2015. Java Native Access (JNA) Project Website.

https://github.com/twall/jna. (2015).

[44] Piotr Wendykier and James G. Nagy. 2010. Parallel Colt: A High-Performance

Java Library for Scientific Computing and Image Processing. ACM Transactions
on Mathematical Software 37, 3 (2010), 31:1–31:22.

[45] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles

Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.

2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! ’13).

http://www.javagrande.org/leapforward/cacm-ron.pdf
https://get.google.com/tango/
http://eigen.tuxfamily.org
http://math.nist.gov/javanumerics/jama/
http://dst.lbl.gov/ACSSoftware/colt/
http://www.intel.com
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://opencv.org/opencv-java-api.html
http://opencv.org/
https://doi.org/10.1145/3050748.3050764
http://dl.acm.org/citation.cfm?id=977395.977673
https://developer.arm.com/technologies/neon
https://www.microsoft.com/en-us/kinectforwindows/
http://openjdk.java.net/projects/graal/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/sumatra/
https://github.com/hughperkins/jeigen
https://doi.org/10.1145/3093334.2989236
https://github.com/strasdat/Sophus
https://commons.apache.org/proper/commons-math/
https://github.com/twall/jna

	Abstract
	1 Introduction
	2 Background
	2.1 LSD-SLAM
	2.2 SLAM Kernels
	2.3 LSD-SLAM in Java

	3 Indigo: Specialization of Java Libraries
	3.1 Library Optimizations
	3.2 Compiler Limitations

	4 Indigo: Specialization of Dynamic Compilers
	4.1 The Graal Compiler
	4.2 Extending The Graal Compiler
	4.3 Extending Graal for Vectors

	5 Evaluation
	5.1 Arithmetic Operations
	5.2 SLAM Kernels
	5.3 Discussion

	6 Related Work
	6.1 Pure Java Implementations
	6.2 Native Libraries
	6.3 Vectorization and GPU Offloading

	7 Conclusion and Future Work
	Acknowledgments
	References

