
Java™ on Scalable Memory
Architectures

by

Foivos Zakkak

University of Crete

Department of Computer Science

Dissertation

submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

Java™ on Scalable Memory Architectures

Foivos Zakkak

October 2016

University of Crete

Computer Science Department

Doctoral Committee:

Angelos Bilas, Professor, University of Crete, (Advisor)

Polyvios Pratikakis, Assistant Researcher, ICS-FORTH, (Advisor)

Manolis G.H. Katevenis, Professor, University of Crete

Panagiota Fatourou, Assistant Professor, University of Crete

Dimitrios S. Nikolopoulos, Professor, Queen’s University of Belfast

Evangelos Markatos, Professor, University of Crete

Vasileios Koutavas, Assistant Professor, Trinity College Dublin

This work was performed at the Computer Architecture and VLSI Systems (CARV) Laboratory of the Insti-

tute of Computer Science (ICS) of the Foundation for Research and Technology – Hellas (FORTH), and

was financially supported by a FORTH-ICS scholarship, including funding by the European Social Fund

(ESF) and Greek National Resources, through theGreenVM (#1643) project, which has been implemented

under the ARISTEIA action of the “Operational Programme on Education and Lifelong Learning”, and

the European Commission under the 7th Framework Programs through the EuroServer (FP7-ICT-610456)

project.

Copyright © 2016 by Foivos Zakkak

All rights reserved

This thesis was typeset in Liberation Sans and Liberation Mono

with the help of KOMA-Script and LuaLATEX.

Figures were generated using Ti𝑘Z and Inkscape.

Plots were generated using gnuplot.

Source files were edited with GNU Emacs.

University of Crete
Department of Computer Science

Java™ on Scalable Memory Architectures

Dissertation submitted by

Foivos Zakkak

in partial fulfillment of the requirements for the
Doctor of Philosophy degree in Computer Science

Author:

Foivos Zakkak, University of Crete

Examination Committee:

Angelos Bilas, Professor, University of Crete

Polyvios Pratikakis, Assistant Researcher, ICS-FORTH

Manolis G.H. Katevenis, Professor, University of Crete

Panagiota Fatourou, Assistant Professor, University of Crete

Dimitrios S. Nikolopoulos, Professor, Queen’s University of Belfast

Evangelos Markatos, Professor, University of Crete

Vasileios Koutavas, Assistant Professor, Trinity College Dublin

Departmental approval:

Antonis Argyros, Professor, Director of Graduate Studies

Heraklion, October 2016

Acknowledgements

This thesis would not be possible without the contributions of a number of people.

I deeply thank my family and friends for being there for me. I specially thank my parents

for their support all these years and making me the person I am today, my sister for cre-

ating the logo of this thesis and setting an example for me to follow (and compete with),

and Marilena for respecting my dislike of talking about my work at home, for brightening

up my days, and for much more.

I thank everyone who took part in the discussions about the design decisions and im-

plementation difficulties regarding the JVM presented in this thesis. Namely, those are1

Panagiota Fatourou, Nikolaos Kallimanis, Lena Kanellou, Manolis Katevenis, Spyros

Lyberis, Vassilis Papaefstathiou, Polyvios Pratikakis, Antonis Psathakis, Christi Syme-

onidou, and Evaggelos Vasilakis.

I especially thank Polyvios Pratikakis, Angelos Bilas, Manolis Katevenis, Panagiota Fa-

tourou, and Dimitrios Nikolopoulos for their advice and support.

Special thanks also go to Christi Symeonidou for reviewing all my papers that got pub-

lished during the period of this PhD thesis, and Antonis Psathakis for being my eyes on

the Formic-Cube, and sometimes my hands as well, when I was working remotely and

I needed help to debug link failures.

Additionally, I thank all those who contributed in the implementation of the Formic 520-

core prototype, which was used as the evaluation platform of this thesis. Especially,

Spyros Lyberis who, apart from having a major role in the hardware design process,

also developed the core C libraries for Formic. I also thank Manolis Marazakis and

Michalis Ligerakis for their support and contribution in the administration of the various

systems used in this thesis.

Last but not least, I would like to thank the free and open source community for provid-

ing the world with so many great tools, without which this thesis would not have been

possible.

Funding: The work presented in this thesis was performed at the Computer Architec-

ture and VLSI Systems (CARV) laboratory of the Institute of Computer Science (ICS) of

the Foundation for Research and Technology – Hellas (FORTH), and it was financially

supported by a FORTH-ICS scholarship, including funding by:

1in alphabetical order

i

Acknowledgements F. Zakkak

1. the European Social Fund (ESF) and Greek National Resources, through the

GreenVM (#1643) project, which has been implemented under the ARISTEIA ac-

tion of the “Operational Programme on Education and Lifelong Learning”;

2. and the European Commission under the 7th Framework Programs through the

EuroServer (FP7-ICT-610456) project.

ii

Abstract

The beginning of the new millennium signaled the need for new ways to keep improving

the performance of processors. The approach of increasing the frequency as transistors

got smaller and smaller is no longer viable due to the increased power-leakage and heat

generation. In an effort to maintain the performance increase steady despite the diffi-

culties, processor manufacturers turned to multi-core computing. This way the industry

keeps taking advantage of the smaller transistors by packing more compute elements

in the same area, rather than making the circuits more complex and increasing the fre-

quency. However, as the number of cores increases new challenges come up. One such

challenge regards cache-coherence. Managing hardware caches and keeping the data

coherent across them is become more and more complex and energy inefficient as the

number of cores grow. To tackle this issue hardware architects are experimenting with

modular non cache coherent and partially coherent architectures. Such architectures

delegate the memory coherency to the software.

In this thesis we study how high productivity languages can be run efficiently on such

architectures. High productivity languages, like Java, are designed to abstract away the

hardware details and allow developers to focus on the implementation of their algorithm.

Such programming languages rely on process virtual machines, like the Java virtual

machine, to provide consistent behavior across different platforms. We focus our work

on the Java virtual machine since it is one of themost popular andwidely studied process

virtual machines on top of which tens of languages are being implemented, with the

most distinguishable being Java and Scala.

Java virtual machine implementations need to adhere to the Java language specifica-

tions and the Java memory model. In this thesis we study the Java memory model and

present an extension of it that exposes explicit memory transfers between caches. This

extension eases the process of arguing about the adherence of a Java virtual machine

targeting a non cache coherent architecture by providing explicit rules regarding the or-

dering of memory transfers in respect to other operations in an Java execution. We

sketch the proof that our extension complies to the original Java memory model and

allows the same optimizations.

We present a Java virtual machine design targeting non cache coherent and partially

coherent architectures. Our design aims to minimize the number of memory transfers

and messages exchanged while still adhering to the Java memory model. Our design

also takes advantage of partial coherence by sharing some structures across different

cores on the same coherence island. Based on our design we implement a Java virtual

iii

Abstract F. Zakkak

machine and evaluate it on an emulator of a non cache coherent architecture. The

results show that our implementation scales up to 500 of cores and its scalability is

comparable to that of the state of the art Java virtual machine running on a cache-

coherent architecture.

Last but not least we model our implementation in the operational semantics of a Java

core calculus that we define for this purpose. We then prove that these operational

semantics produce only well-formed executions according to the Java memory model.

Since the operational semantics model our implementation we argue that the latter also

produces only well-formed executions, thus it adheres to the Java memory model.

iv

Περίληψη

Η αρχή της χιλιετίας που διανύουμε σήμανε την ανάγκη αναζήτησης νέων μεθόδων για

τη συνέχιση της βελτίωσης της απόδοσης των επεξεργαστών. Η μέθοδος της αύξησης

της συχνότητας των επεξεργαστών καθώς τα τρανζίστορ γίνονται ολοένα και μικρότερα

δεν είναι πλέον εφικτή, λόγο της ολοένα αυξανόμενης διαρροής ρεύματος και παραγω-

γής θερμότητας. Στην προσπάθεια τους να διατηρήσουν τους ρυθμούς βελτίωσης της

απόδοσης των επεξεργαστών, οι κατασκευαστές επεξεργαστών στράφηκαν προς τον

σχεδιασμό πολυπύρηνων επεξεργαστών. Με αυτό τον τρόπο η βιομηχανία εξακολου-

θεί να εκμεταλλεύεται το ολοένα μικρότερο μέγεθος των τρανζίστορ, περιλαμβάνοντας

περισσότερα επεξεργαστικά στοιχεία στον ίδιο χώρο αντί να αυξάνουν την πολυπλο-

κότητα των κυκλωμάτων και την συχνότητα εναλλαγής καταστάσεων. Καθώς όμως το

πλήθος των πυρήνων αυξάνεται εμφανίζονται νέες προκλήσεις. Μία τέτοια πρόκληση

αφορά την παροχή συνέπειας μνήμης. Η διαχείριση των κρυφών μνημών και η διατή-

ρηση συνεπών αντιγραφών σε αυτές γίνεται ολοένα και πιο περίπλοκη και ενεργειακά

μη αποδοτική καθώς το πλήθος των πυρήνων αυξάνεται. Για να αντιμετωπίσουν αυτό

το πρόβλημα, οι αρχιτέκτονες υπολογιστών πειραματίζονται με νέες αρχιτεκτονικές που

παρέχουν συνέπεια μνήμης μόνο μεταξύ ενός υποσυνόλου των κρυφών μνημών ή και

καθόλου. Αυτές οι αρχιτεκτονικές αναθέτουν τη διαχείριση μνήμης στο λογισμικό.

Στη διατριβή αυτή μελετάμε πως μπορούν να τρέξουν γλώσσες προγραμματισμού υψη-

λού επιπέδου σε τέτοιες αρχιτεκτονικές. Οι γλώσσες προγραμματισμού υψηλού επιπέ-

δου, όπως η Java, είναι σχεδιασμένες να αποκρύπτουν τις λεπτομέρειες της αρχιτεκτο-

νικής από τους προγραμματιστές. Με αυτόν τον τρόπο επιτρέπουν στους προγραμμα-

τιστές να επικεντρωθούν στην υλοποίηση των αλγορίθμων τους και όχι στην διαχείριση

της εκάστοτε αρχιτεκτονικής. Οι γλώσσες προγραμματισμού υψηλού επιπέδου βασίζο-

νται σε εικονικές μηχανές για να παρέχουν τα ίδια αποτελέσματα σε διαφορετικές αρ-

χιτεκτονικές. Στην εργασία μας επικεντρωνόσαστε στην εικονική μηχανή της Java. Η

εικονική μηχανή της Java είναι μία από τις πιο δημοφιλείς και πολυμελετημένες εικο-

νικές μηχανές η οποία υλοποιεί δεκάδες γλώσσες προγραμματισμού, από τις οποίες

ξεχωρίζουν κυρίως η Java και η Scala.

Οι υλοποιήσεις εικονικών μηχανών Java πρέπει να συμμορφώνονται υπακούν στον ορι-

σμό της γλώσσας προγραμματισμού Java (Java language specification) και στο μοντέλο

μνήμης της (Java Memory Model). Στην εργασία αυτή μελετάμε το μοντέλο μνήμης της

Java και παρουσιάζουμε μία επέκταση του που εκφράζει ρητά τις μεταφορές δεδομένων

μεταξύ των κρυφών μνημών. Η επέκταση αυτή παρέχει ρητούς κανόνες που αφορούν

v

Περίληψη F. Zakkak

τις μεταφορές δεδομένων μεταξύ των κρυφών μνημών οι οποίοι διευκολύνουν την επι-

χειρηματολογία σχετικά με την συμμόρφωση μίας εικονικής μηχανής Java στο μοντέλο

μνήμης της Java. Ακόμη αποδεικνύουμε ότι η επέκταση αυτή είναι συμβατή με το αρχι-

κό μοντέλο μνήμης της Java και επιτρέπει τις ίδιες βελτιστοποιήσεις κώδικα.

Επιπροσθέτως σχεδιάζουμε μία εικονική μηχανή Java για αρχιτεκτονικές με μερική ή μη-

δενική συνέπεια μνήμης. Ο σχεδιασμός μας στοχεύει στην ελαχιστοποίηση των μεταφο-

ρών δεδομένων και ανταλλαγών μηνυμάτων που χρειάζονται για τη συμμόρφωση στο

μοντέλο μνήμης της Java. Ο σχεδιασμός μας εκμεταλλεύεται αρχιτεκτονικές με μερική

συνέπεια μνήμης χρησιμοποιώντας μερικές κοινές δομές μεταξύ πυρήνων που βρίσκο-

νται στην ίδια συστάδα πυρήνων με συνέπεια μνήμης. Βασιζόμενοι στον σχεδιασμό

αυτό υλοποιούμε μία εικονική μηχανή Java και την αξιολογούμε τρέχοντας πειράματα

σε έναν εξομοιωτή αρχιτεκτονικής χωρίς συνέπεια μνήμης. Τα αποτελέσματα δείχνουν

ότι η υλοποίηση μας κλιμακώνεται μέχρι και σε 500 πυρήνες και η κλιμακωσιμότητα της

είναι συγκρίσιμη με αυτή της πιο πρόσφατης εικονικής μηχανής Java (HotSpot VM) σε

μία αρχιτεκτονική με συνέπεια μνήμης.

Τέλος εκφράζουμε με μαθηματικό τρόπο την υλοποίησή μας και αποδεικνύουμε ότι πα-

ράγει μόνο σωστές εκτελέσεις, σύμφωνα με το μοντέλο μνήμης και τον ορισμό της γλώσ-

σας.

vi

Contents

Acknowledgements . i

Abstract . iii

Περίληψη . v

List of Figures . xi

List of algorithms . xiii

List of Tables . xv

1. Introduction . 1

1.1. Motivation . 2

1.2. Contributions . 4

1.3. Outline . 5

2. Background and State of the Art . 7

2.1. Emerging Processor Architectures . 7

2.1.1. Intel Runnemede . 7

2.1.2. Formic . 9

2.1.3. EUROSERVER Architecture . 9

2.1.4. Assumptions About Future Processors 9

2.2. Java Virtual Machines . 11

2.2.1. Java/DSM . 12

2.2.2. Hyperion . 12

2.2.3. cJVM . 13

2.2.4. JESSICA2 . 14

2.2.5. CellVM . 14

2.2.6. Hera-JVM . 15

3. The Memory Model . 19

3.1. Introduction . 19

3.1.1. Motivation . 20

3.1.2. Approach . 22

3.2. The formalization of JMM . 23

3.2.1. Definitions . 24

vii

Contents F. Zakkak

3.2.2. Validation procedure: . 29

3.2.3. JMM Guarantees . 30

3.3. The Distributed Model . 31

3.3.1. The JDMM’s Abstract Machine Memory Model 32

3.3.2. The Java Distributed Memory Model 33

3.3.3. No Local Caching Optimization . 42

3.3.4. Context Switching and Cache Sharing 42

3.3.5. Thread Migration . 45

3.3.6. Garbage Collection . 46

3.3.7. Final Fields . 47

3.3.8. Direct Transfers Across Local Memories 48

3.4. On JDMM’s adherence to JMM . 49

3.5. On JDMM’s expressiveness over JMM . 50

3.5.1. Causality Tests . 54

3.5.2. Code optimization: Reordering . 67

3.6. Case Study . 69

4. Designing a JVM for hundreds of incoherent cores 71

4.1. Key Challenges . 71

4.1.1. Memory Management . 71

4.1.2. Synchronization . 75

4.1.3. Thread Scheduling . 76

4.2. Design . 77

4.2.1. Memory Management . 77

4.2.2. Synchronization . 84

4.2.3. Thread Scheduling . 89

5. DiSquawk: 512 Cores, 512 Memories, 1 JVM 93

5.1. Formic-Cube’s architecture overview . 93

5.2. Base Virtual Machine . 94

5.3. Implementation . 95

5.3.1. Memory Management . 95

5.3.2. Software Cache . 97

5.3.3. Thread Scheduling . 100

5.3.4. Java Monitors and The Synchronization Manager 101

5.3.5. Volatile Variables . 103

5.3.6. Liveness Detection . 103

5.4. Evaluation . 104

5.4.1. Software Cache Impact . 104

5.4.2. Scheduling . 104

5.4.3. Synchronization Manager . 105

5.4.4. Overall Scalability . 109

5.4.5. Overhead . 112

viii

F. Zakkak Contents

6. Distributed Java Calculus . 115

6.1. The Calculus . 115

6.1.1. Syntax . 115

6.1.2. Operational Semantics . 118

6.2. Proof Sketch . 126

7. Related work . 129

7.1. Memory Models . 129

7.2. Software Caching . 131

7.3. Java Virtual Machines . 132

8. Conclusions . 133

8.1. Further Work & Open Research Problems 134

8.1.1. Machine-Checked Proofs . 134

8.1.2. Evaluation on Non-emulated Architectures With Coherent-islands 134

8.1.3. State-of-the-art Core VM . 135

8.1.4. Garbage Collection . 135

8.1.5. java.util.concurrent . 135

8.1.6. Java Memory Model Update . 136

Bibliography . 137

A. JDMM Formal Definitions and DJC . 151

B. Proof sketch of adherence to JDMM . 163

ix

List of Figures

2.1. Overview of the Intel Runnemede Architecture 8

2.2. The Formic-Board and Formic-Cube . 10

2.3. Overview of the EUROSERVER Architecture 11

3.1. Actions ordering visualization . 29

3.2. The abstract machine . 33

3.3. Test case 12 thread 1 equivalent code . 62

4.1. Time window example. 72

4.2. The abstract machine (redraw of Figure 3.2) 78

4.3. Impact of arguments size and number on delay 80

5.1. Memory Partitioning . 96

5.2. Virtual address interpretation . 96

5.3. Visualization of the stored data layout. The headers metadata are colored. 99

5.4. Visualization of requests to synchronization manager 103

5.5. The memory abstraction. 104

5.6. Execution Time (1 Synchronization Manager) vs #Threads 105

5.7. Synchronization Manager Throughput vs #Threads 106

5.8. Throughput vs Number of Synchronization Managers 107

5.9. Queuing vs Retrying: Impact on Application’s Execution Time 108

5.10.Queuing vs Retrying: Impact on Synchronization Manager’s Throughput . 109

5.11.Black-Scholes Scaling . 111

5.12.Series Scaling . 111

5.13.Crypt Scaling . 112

5.14.SOR Scaling . 112

5.15.DiSquawk Overheads . 113

6.1. Semantics of Local Operations . 119

6.2. Operational Semantics for Implicit Operations 121

6.3. Semantics of Volatile Accesses . 122

6.4. Semantics of Synchornization Operations 123

6.5. Global Operational Semantics . 125

xi

List of Algorithms

1. Hybrid software cache . 81

2. Hybrid software cache (cont.) . 82

3. Synchronization Management with Local Monitors 86

4. Synchronization Management with Local Monitors (cont.) 87

5. Hybrid load balancing . 91

6. Hybrid load balancing (cont.) . 92

xiii

List of Tables

3.1. Abbreviations for JMM Action Kinds . 24

3.2. Definition of JMM Notation . 27

3.3. Commonly used symbols . 35

3.4. Abbreviations for JDMM Action Kinds . 36

3.5. Definition of JDMM Notation . 37

3.6. Garbage Collection Example . 46

3.7. Causality Test Case 1 . 55

3.8. Causality Test Case 2 . 56

3.9. Causality Test Case 3 . 56

3.10.Causality Test Case 4 . 57

3.11.Causality Test Case 5 . 57

3.12.Causality Test Case 6 . 58

3.13.Causality Test Case 7 . 58

3.14.Causality Test Case 8 . 59

3.15.Causality Test Case 9 . 60

3.16.Causality Test Case 10 . 60

3.17.Causality Test Case 11 . 61

3.18.Causality Test Case 12 . 61

3.19.Causality Test Case 13 . 62

3.20.Causality Test Case 14 . 63

3.21.Causality Test Case 15 . 63

3.22.Causality Test Case 16 . 64

3.23.Causality Test Case 17 . 64

3.24.Causality Test Case 18 . 65

3.25.Causality Test Case 19 . 66

3.26.Causality Test Case 20 . 67

6.1. Abstract syntax of DJC . 116

6.2. Definition of Notation . 118

xv

Chapter 1.

Introduction

In 1965 Gordon Moore predicted that the number of components in CPUs would double

roughly every year for the next decade. Later, in 1975, he revised his prediction and

stated that after 1980 he expects that the components in CPUs will double roughly every

two years. These predictions where used to create the infamous “Moore’s law” which

states that the performance –not the number of transistors– of CPUs doubles every

one and a half years. Satisfying the “Moore’s law”, processor manufacturers for many

years kept improving the performance of CPUs by creating more complex circuits using

more, smaller transistors and increasing the frequency they operate on. However, as

transistors get smaller, their power leakage and heat generation get higher, putting a

limit on the frequency increase. As a result, to achieve the targets set by “Moore’s lay”

processor, in the new millennium manufacturers turned to chips with multiple, slower,

but at the same time more energy efficient, cores. In 2005 AMD and Intel released

the first dual-core desktop CPUs (Athlon 64 x2 and Pentium D respectively). Since

then, processor designers are trying to fit more and more cores in a single chip. Multi-

cores might not be as fast as single-cores but can handle more workload at the same

time, resulting in better overall performance. This move, from frequency and circuit

complexity increase to multiple cores, however, has led to a reduction in the rate in

which the performance of CPUs doubles.

“ The last two technology transitions have signalled that our cadence today is

closer to two and a half years than two.

– Brian Krzanich, CEO of Intel, 2015”
Nevertheless, as the number of transistors per chip continue to increase, it is expected

that the number of cores per processor will follow in a similar pace. Esmaeilzadeh et

al. [31] estimate, that processors will reach the hundreds of cores per chip in the next

decade. As the number of cores per chip continuously grows, processor designers are

trying to keep energy consumption low or even reduce it while improving the overall

performance. Keeping the energy consumption at low levels allows for longer battery

life for mobile devices, as well as, for reduced operational costs of data-centers and

supercomputers. Trends suggest that future many-core machines will have hundreds of

mid-range cores with very fast communication channels. At such high number of cores,

1

Chapter 1. Introduction F. Zakkak

memory management becomes a major issue. Implementing efficient cache coherency

protocols over thousands of cores is not trivial. To make matters worse, previous work

has shown that cache coherency protocols as we know them today are not going to

scale in terms of energy consumption. Kaxiras et al. [53] show that directory coherence

protocols do not scale in terms of power and performance. Choi et al. [24] also argue

that cache coherence protocols imply large performance and energy overhead.

To overcome this issue, processor designs proposed by recent literature use limited or

no hardware cache coherency. Intel has presented two examples. First, the Single-chip

Cloud Computer (SCC) [39], a homogeneous 48-core non-cache-coherent architecture.

The SCC uses a full cache hierarchy per core, includes an on-chip buffer for core-to-core

communication, and is programmed mainly using MPI or an alternative custom-tailored

message passing programming model. Second, Runnemede [20], a hierarchical non-

cache-coherent many-core architecture design that can scale up to hundreds of cores.

Runnemede has four levels of scratchpad memories and three levels of computational

modules. Furthermore, in each execution engine, the finer computation module features

a 32K software-managed non-coherent cache. All the scratchpads map to a unique

address range from a global address space. Runnemede offers DMA-like transfers that

can work on cache-line granularity. In related literature, Lyberis et al. [66, 67] introduce

the Formic board and built the Formic-Cube, a 512-core prototype using 64 such boards.

Each Formic-board features eight MicroBlaze-based, non-cache-coherent cores, while

the prototype features DMA capabilities and full network-on-chip in a 3D-mesh topol-

ogy. Last but not least, the EUROSERVER architecture [29] uses the chiplet as its

basic module. Each chiplet provides 8 ARMv8 cores with full cache coherent mem-

ory accesses, forming coherent-islands, and is equipped with a DMA engine. Multiple

chiplets can communicate through a multi-level global interconnect which allows for re-

mote memory accesses.

1.1. Motivation

In distributed or non-cache-coherent memory architectures like SCC, Runnemede and

the Formic-Cube, the software needs to explicitly transfer data across nodes and make

sure the transfers happen in the correct order to get the desired results. Exposing all

architectural details to the programmer and giving her the full control of the architecture,

allows her to develop sophisticated and efficient programs. Unfortunately though, it also

slows down the development process and reduces productivity, since the programmer

has to argue about the correctness of operations, not directly related to the programming

language. Furthermore, it significantly limits the portability of applications because they

depend heavily on the underlying system architecture.

Runnemede and the Formic-Cube both propose using a task-based programmingmodel

as a higher-level abstraction to MPI, using task annotations to declare memory usage

2

F. Zakkak 1.1. Motivation

and a runtime system to schedule computations to data or set up all required data trans-

fers among memories or caches in software. In such programming models developers

do not need to explicitly move data or work, as long as they correctly annotate their pro-

grams. In some cases, however, properly annotating the program is not trivial, e.g., due

to deep nesting levels which makes it hard for the developer to find all possible memory

accesses of a task. Additionally, task-based programming models are not yet widely

adopted and are mostly focused to high performance computing (HPC).

The computer science community often categorizes programming languages based on

their abstraction level. Low-level languages are closer to the hardware specification and

enable the programmer to directly interact with the hardware. C is an example of such

a low-level language. These languages are very popular in the embedded systems and

kernel development eras. In such development environments the program often needs

to have direct access to the hardware, i.e., hardware drivers.

On the other hand, high-level programming languages hide any underlying architectural

details. Such programming languages are a better fit for developing user level or compu-

tational applications. High-level programming languages allow the programmer to focus

on the problem she needs to solve instead of the underlying architecture characteris-

tics. As a result, high-level programming languages increase productivity. Thus, they

are also called high-productivity languages. Such programming languages are usually

implemented using process virtual machines, that act as the middle-ware between the

language and the underlying operating system.

Java1 is such a high-level, object oriented, general-purpose programming language.

Some of the more interesting features of Java are its builtin concurrency support and its

portability. In terms of concurrency, Java provides builtin threads and synchronization

mechanisms. Of special interest the fact that the behavior of concurrent Java programs

is formally defined by a memory model. Java was one of the first programming lan-

guages to define a memory model to clearly define the interaction of concurrent threads

through the memory. In terms of portability, Java has been advertised as a “write once,

run anywhere” (WORA) language. Java achieves this by abstracting away any architec-

tural details, providing a uniform experience across different platforms through the Java

Virtual Machine (JVM). The JVM, along with the Java compiler, are essentially the im-

plementation of the Java language. The Java compiler translates the Java source code

to Java bytecode that is then interpreted or compiled just-in-time (JIT) by the JVM. The

Java bytecode is common for every architecture, meaning that a Java program may be

compiled once on any platform and then be run on any other platform, as long as there

is a JVM implementation for that platform.

JVMs are usually developed using a low-level language and take care of the thread

scheduling, memory management etc. As of today, JVMs are mostly targeted to shared-

memory, cache-coherent systems. There are a few JVMs targeting distributed systems,

which essentially target clusters of computers and not single chips [5, 68, 102, 107]. The

1Java is a trademark of Oracle.

3

Chapter 1. Introduction F. Zakkak

emerging many-core architectures, however, differ from super-computer clusters in that

all the communication is performed on chip. As a result, they feature significantly lower

network latency and possibly higher network throughput than super-computer clusters.

Additionally, they allow for explicit asynchronous fetches through DMA transfers from

and to the whole system’s address space. On the contrary, super-computer clusters

with interfaces supporting DMA transfers usually only allow access to a subset of the

system’s address space. There are also two JVMs [73, 77] targeting the IBM’s Cell

B.E. processor [81]. Cell B.E. is a heterogeneous multiprocessor featuring one POWER

Processing Unit (PPU) and eight Synergistic Processing Units (SPUs). The cores can

access each other’s memory through DMA transfers or remote accesses, but there is

no cache coherency between the SPUs’ scratchpads. Cell B.E. shares many common

characteristics with that of the proposed future many core architectures [20, 29, 66].

However, the low number of cores, on Cell B.E., allows for centralized designs, like

CellVM [77], that use the more powerful PPE as a server, handling synchronization

requests.

In this thesis we explore how JVMs can be implemented on non-cache-coherent ar-

chitectures with hundreds of cores. We focus our work on JVMs because they are of

special interest, since apart from Java itself they run Scala and other languages as well.

Java itself is a popular high-level programming language used in many fields. One of its

popular use cases is that of Hadoop [90], a distributed file system that scales to a large

number of cores. Scala [78], on the other hand, is a younger programming language

with built-in support for Actors, data-parallelism, asynchronous programming with Fu-

tures and Promises, software transnational memory, and event streams. Scala, despite

its young –compared to Java– age, has been adopted by the industry and the academia

for its performance in data analytics.

1.2. Contributions

Specifically, in this thesis we make the following contributions:

• We present the Java Distributed Memory Model (JDMM), an algebraic formaliza-

tion of the Java Memory Model for non-cache-coherent and distributed memory

architectures, and argue about its adherence to the original Java Memory Model.

Our formalization exposes the memory management mechanisms, enabling JVM

implementers to better understand how to design and implement thememoryman-

agement mechanisms of their JVM in order to adhere to JMM, when targeting

non-cache-coherent or partially cache-coherent architectures. (Chapter 3)

• We design algorithms for software caching of Java objects, and synchronization

management. The software caching algorithms provide a memory access layer

that adheres to the Java Memory Model. The synchronization management algo-

rithms ensure mutual exclusion for threads synchronizing through Java monitors.

4

F. Zakkak 1.3. Outline

Additionally they ensure the proper ordering between threads that synchronize in

a point-to-point manner without the use of Java monitors. Our algorithms take ad-

vantage of partial cache coherence, when the latter is provided by the architecture.

(Chapter 4)

• We implement our algorithms in DiSquawk, a proof-of-concept Java virtual ma-

chine. DiSquawk targets the Formic-Cube architecture, a non-cache-coherent,

512-core, architecture. Since Formic-Cube does not offer coherent-islands, we

limit our implementation to the inter-coherent-island part of our algorithms, ex-

cluding any logic regarding optimizations within coherent-islands. Each core runs

an instance of an interpreter-based JVM. These instances implicitly communi-

cate with each other and exchange data to provide a single system image to

the Java application. DiSquawk is licensed under the GNU General Public Li-

cense (GPL) and can be downloaded at https://github.com/CARV-ICS-

FORTH/disquawk. (Chapter 5)

• We evaluate DiSquawk using a set of benchmarks and micro-benchmarks. The

micro-benchmarks help us to better understand the behavior and performance of

specific mechanisms of DiSquawk, while the benchmarks help us measure its

overall scalability. The results show that DiSquawk scales with the number of

cores in a similar manner to the state-of-the-art, HotSpot JVM. (Chapter 5)

• We define a Java core calculus and model DiSquawk in its operational semantics.

Our calculus is a minimal core calculus for the Java language, which is based

on the Featherweight Java [43] variant introduced by Johnsen et al. [48]. In this

thesis we extend it by replacing the explicit lock support with synchronization op-

erations, e.g., monitor-enter, join, etc. Similarly to Johnsen et al. [48], we also

omit Java inheritance, subtyping, and typecasting. Based on our calculus’ oper-

ational semantics, we sketch a proof of adherence of the proposed algorithms to

the Java Distributed Memory Model and thus to the original Java Memory Model.

(Chapter 6)

1.3. Outline

This thesis is organized as follows. Chapter 2 discusses the trends in emerging proces-

sor architectures and presents the state of the art in process virtual machines that are

most closely related to our proposal; Chapter 3 presents the Java Distributed Memory

Model (JDMM), the JMM extension we create to expose cachemanagement operations;

Chapter 4 presents the algorithms we design for software caching of Java objects and

synchronization management that adhere to JDMM while taking advantage of partial

coherence when provided by the architecture; Chapter 5 presents DiSquawk, a Java

Virtual Machine (JVM) implementing the proposed algorithms for architectures without

partial coherence; Chapter 6 presents DJC, a Java core calculus we define along with

5

https://github.com/CARV-ICS-FORTH/disquawk
https://github.com/CARV-ICS-FORTH/disquawk

Chapter 1. Introduction F. Zakkak

its operational semantics that models DiSquawk; Chapter 7 discusses related work; and
Chapter 8 concludes and discusses open research problems and future work.

6

Chapter 2.

Background and State of the Art

This chapter discusses the trends in future processor architectures and the state of the

art in process virtual machines targeting systems with similar properties as those of the

future processor architectures.

2.1. Emerging Processor Architectures

As we discuss in Chapter 1, to overcome the power wall and continue increasing the

performance of integrated circuits, processor architects pack multiple cores in a single

chip. Processors in the next decade are expected to contain hundreds of cores [31].

At that high number of cores, cache management and fast memory access in general,

becomes a major issue. Previous work has shown that cache coherency protocols as

we know them today are not going to scale in terms of energy consumption [24, 53].

Inspired by such research results, processor designs proposed by recent literature use

limited or no hardware cache coherency.

2.1.1. Intel Runnemede

Intel Runnemede [20] is a hierarchical non-cache-coherent many-core architecture de-

sign that can scale up to hundreds of cores. Runnemede has four levels of scratchpad

memories and three levels of computational modules. The basic module of Runnemede

is the block. Each block consists of a single Control Engine (CE), several Execution

Engines (XE) and an L2 scratchpad. Execution engines are general purpose mid-range

cores aiming for higher performance over watt ratios. As their name implies they are de-

signed to execute the application code. On the contrary, control engines, as their name

implies, are designed to manage (control) the execution engines and are aiming for high

performance in an effort to reduce the latency of critical non-parallel operations. This

design is tailored after the master-servant model, where the master core manages the

servant cores and schedules work to them. Each control engine and execution engine

features a 32K software-managed non-coherent cache. Execution engines also feature

7

Chapter 2. Background and State of the Art F. Zakkak

Figure 2.1.: Overview of the Intel Runnemede Architecture

8

F. Zakkak 2.1. Emerging Processor Architectures

a 64K L1 scratchpad. Multiple blocks can be combined in a unit, featuring a shared L3

scratchpad. A Runnemede chip can have multiple units that share an L4 scratchpad. A

schematic overview of the Runnemede architecture is presented in Figure 2.11. All the

scratchpads, register files, and DRAMs in Runnemede are addressable by every core

in the system using a 64-bit global address space. Runnemede offers DMA-like trans-

fers from and to any scratchpad, register file, and DRAM in the system.

2.1.2. Formic

In related literature, Lyberis et al. [66, 67] introduce the Formic-Board. The Formic-

Board is another modular design that allows scaling up by combining multiple modules.

Each Formic-Board features 128MiB of DRAMand 8 cores, each equipped with a private

8KiB L1 cache and an also private 256KiB L2 cache. Combining 64 Formic boards,

Lyberis et al. built the Formic-Cube, a 512-core prototype, which they show to scale well

running a representative set of benchmarks. The prototype features DMA capabilities

and full network-on-chip in a 3D-mesh topology. Similarly to Runnemede all the caches

and DRAMs are addressable by every core in the system using a global address space.

A schematic overview of the Formic-Board is presented in Figure 2.2a and a picture of

the Formic-Cube is presented in Figure 2.2b.

2.1.3. EUROSERVER Architecture

Last but not least, the EUROSERVER architecture [29] uses the chiplet as its basic

module. Each chiplet combines 2 quad-core ARMv8 processors, totaling 8 cores. In

contrast to Runnemede and Formic-Board the caches of the chiplet are coherent, form-

ing coherence-islands. Chiplets are also equipped with DMA engines that allow for data

transfers across chiplets. Multiple chiplets can also communicate through a multi-level

global interconnect which allows for remote memory accesses. A schematic overview

of the EUROSERVER architecture is presented in Figure 2.3.

2.1.4. Assumptions About Future Processors

Inspired by these architectures, we assume that in the following decade:

• Processors will be featuring hundreds of CPU cores in a single chip. A few chips

will be able to be combined in a single board, forming a node with thousands cores.

1Figure’s source: [20]

9

Chapter 2. Background and State of the Art F. Zakkak

(a) Formic-Board Overview (Example with two Formic-Boards)

(b) The Formic-Cube

Figure 2.2.: The Formic-Board and Formic-Cube

10

F. Zakkak 2.2. Java Virtual Machines

Figure 2.3.: Overview of the EUROSERVER Architecture

• Processors will be of heterogeneous nature. Many-core processors will consist

of a mix of strong, high-performance, energy-hungry cores, and weaker, power-

efficient cores. The number of weaker cores will be about an order of magnitude

more than the number of strong ones in a many-core processor.

• Cache-coherence will be partial. Groups of cores, called coherence-islands, will

share cache coherent caches. Coherence between caches of different coherence-

islands will not be available. Any memory transfers across coherence-islands will

be explicit and managed by software.

2.2. Java Virtual Machines

This thesis focuses on Java Virtual Machines (JVMs). Despite the fact that the Java Vir-

tual Machine (JVM) was mainly designed to implement Java [62], it has been used to

implement other languages as well [10, 26, 41, 78]. The popularity of Java as a pro-

gramming language has motivated researchers to study JVMs in detail and propose

new techniques that improve their performance. Although, most studies and projects

focus on JVMs targeting shared-memory cache-coherent architectures, in the litera-

ture there are several JVM implementations that go beyond a single node or a single

address space. Most of these implementations target super-computer clusters, while a

few others target heterogeneous systems, but all of them aim to deliver a single system

image to the programmer to ease development. Such implementations are relevant to

the one proposed in this work, since both clusters and heterogeneous systems impose

similar challenges to those imposed by non-cache-coherent many-core architectures.

The lack of coherent shared memory creates the need for explicit software memory

management to ensure coherence across the system and adherence to the Java Mem-

ory Model (JMM) [72].

11

Chapter 2. Background and State of the Art F. Zakkak

In the following sections, we briefly present the most noticeable JVM implementations

on clusters or heterogeneous systems. In this process we omit implementations relying

on Software Distributed Shared Memory (SDSM), since they are stricter than the JMM

and usually operate on page granularity while JMM is defined on variable granularity. As

a result SDSM is expected to introduce significant performance and energy overhead

by transferring more data than needed, due to false sharing and redundant coherence

traffic (re-fetches and invalidations).

2.2.1. Java/DSM

Java/DSM [102] is a combination of Java with Distributed Shared Memory (DSM), aim-

ing to hide the heterogeneity and the lack of memory coherence of distributed systems.

Yu and Cox implement Java/DSM as a parallel JVM over DSM, where all objects are

treated as local objects through DSM. The parallel VM consists of a JVM instance per

node and does not support thread migration across nodes. DSM provides a coherent

Java heap across the JVMs, while JVMs are responsible for translating the data across

different architectures (i.e big/little endian). Applications written using synchronization

and locking wherever necessary can run over Java/DSM without the need of any modifi-

cations. Garbage collection is operating separately per node taking in account possible

remote references to avoid premature reclamation.

2.2.2. Hyperion

Hyperion is a high-performance distributed VM written in C as a runtime [4, 68]. To exe-

cute Java, Hyperion first uses, java2c, a source-to-source compiler, to translate Java

bytecode to C. The produced code is afterwards compiled and linked with the Hyper-

ion runtime. Hyperion targets clusters of homogeneous computer nodes. Its aim is to

abstract away the lack of memory-coherence across nodes. To achieve this, Hyperion

implements a software cache over the Partitioned Global Address Space (PGAS) pro-

gramming model.

Hyperion uses an Object Table (OT) which acts like a cache directory and is replicated

on each node. The OT uses object references as indices and has two fields per index,

a local and a remote object pointer. Both fields are initially set to zero. Each node holds

a replica of the OT, which is partitioned in equal portions, so that each node owns a seg-

ment of the global address space. An OT entry is not allowed to have both fields set at

the same time. When a new object is created it is given one of the empty entries’ ref-

erence (index), from those owned by the node allocating the object, and its local object

pointer, on the local OT, is updated to point to the allocated memory. When an object is

referenced, Hyperion first checks if the local object pointer is set on the corresponding

OT entry. If not set, the reference is a remote one, so Hyperion checks the remote ob-

ject pointer. If the remote object pointer is also not set the node copies the actual data

12

F. Zakkak 2.2. Java Virtual Machines

from the node owning them to the local memory and updates the remote object pointer.

To provide a coherent view of the memory, Hyperion tracks writes using bitfields that

indicate which object bytes where modified for the cached remote objects. At synchro-

nization points Hyperion transmits all local modifications to the node owning the original

data and invalidates all the cached data. When a thread writes to a volatile variable

the data are transmitted immediately after the local write and the cached copy is purged.

In Hyperion Java threads are arbitrarily assigned to system nodes by the runtime. In

order to detect the program’s completion, a central node is holding a live thread counter

which is updated at thread start and completion. For nested threads their parent is

responsible to issue the thread start event to avoid races between the start event of the

child and the completion event of the parent.

2.2.3. cJVM

Cluster JVM (cJVM) aims to provide a Single System Image (SSI) view of clusters [5].

Each node in the cluster runs an instance of cJVM and all together form the VM.

cJVM uses a distributed heap model and the proxy pattern to provide the illusion of a

single heap across the cluster nodes. Objects are allocated locally on each node’s heap

and proxies are provided to other nodes at remote method invocations. To improve

performance cJVM supports multiple proxy implementations per object. This way dif-

ferent policies can apply on different object instances depending on the object access

pattern. cJVM performs code analysis to infer the different object access patterns and

implement the appropriate proxies.

When a node invokes a method through a proxy, if it accesses any of the object’s

variables, cJVM redirects execution to the node owning the object to improve perfor-

mance. Aridor et al. call this technique method shipping. Method shipping is imple-

mented using a set of server threads per cJVM instance. These server threads are

handling the shippedmethods. Method shipping, although efficient, results in distributed

threads. Distributed threads also have distributed stacks, however Java expects to

find the whole stack at the local memory. cJVM solves this issue by keeping infor-

mation about the thread that requested a method shipment. Methods changing a Java

thread’s state and traversing the stack frames are using this information to concatenate

the distributed stacks. Another issue is thread identification using Thread.current-

Thread(). This method returns a reference to the thread object invoking it. To provide

the correct reference cJVM passes the global memory address of the thread object with

every method shipment. Thread.currentThread() is then able to refer to the cur-

rent thread through its global memory address.

cJVM also hijacks new so that, allocation of new threads, contrary to that of new objects,

can be performed on a remote node. A load balancing routine is invoked at thread

allocation to find the best node to create the master object.

13

Chapter 2. Background and State of the Art F. Zakkak

2.2.4. JESSICA2

JESSICA2 is a Distributed Java Virtual Machine (DJVM) employing just-in-time compi-

lation to improve performance [107]. JESSICA2, like Hyperion (see Section 2.2.2), is

based on the partitioned global address space (PGAS) model and implements software

caching to improve efficiency.

JESSICA2 introduces the Global Object Space (GOS) layer. In GOS, similar to the

Hyperion PGAS model, each cluster node contributes a portion of the Java heap. Each

node reserves a global heap area and a cache heap area. All threads within a node

access the global heap area directly, without the need of any special handling. On the

other hand, cached heap area accesses are handled by the GOS layer. Each thread has

a private data structure acting as a cache directory. At cache misses JESSICA2 initiates

a data transfer and yields the thread until the transfer is completed. This way, when there

is sufficient work to execute the communication overhead is overlapped with execution.

Furthermore, at synchronization points, cached objects are invalidated and re-fetched to

conform to the Java Memory Model [70, 72]. JESSICA2 introduces the adaptive object

home migration concept, to improve performance for migrated threads. When a thread

is migrated to another node it caches its data to the new node. This results to increased

data traffic at synchronization points. In order to reduce this overhead JESSICA2 also

supports object migration. When a thread’s number of accesses to an object dominates

its total number of accesses, the corresponding object is migrated to that thread’s node

and the rest nodes are informed about the object’s new home.

JESSICA2 also supports thread migration across heterogeneous cluster nodes. To

combine this feature with JIT compilation JESSICA2 limits the points where a thread

migration is possible. At these points migration requests are checked and any ma-

chine registers used to improve performance are written to the corresponding memory

slots. In JESSICA2, Java threads are migrated along with their stack. Additionally at

these points JESSICA2 stores information about the types of the objects in the stack.

This information is mandatory for heterogeneous systems, since type sizes vary among

nodes. The spacial cost of this information is four bits per object.

2.2.5. CellVM

CellVM [77] is a virtual machine targeting the IBM’s Cell BE processor [23, 81]. The Cell

BE is a heterogeneous chip multiprocessor. It consists of a single Power Processing

Element (PPE) and 8 Synergistic Processor Elements (SPEs). Each SPE is equipped

with 256KiB of non-coherent, dedicated local storage. CellVM abstracts away the het-

erogeneity of the processor and the absence of cache-coherence on the SPEs.

CellVM actually consists of two separate modules, the ShellVM and the CoreVM. The

ShellVM is running as a resource manager on the PPE. ShellVM is responsible for han-

dling the majority of the CellVM’s data structures. On the contrary, CoreVM is mainly

14

F. Zakkak 2.2. Java Virtual Machines

a bytecode interpreter. A CoreVM instance is run on each SPE and manages the lo-

cal Java stack, JVM registers and local caches. The Java applications are essentially

run by the CoreVMs on the SPEs, while ShellVM coordinates the. Note also that some

instructions cannot be executed by the CoreVM (e.g. memory allocation, synchroniza-

tion, locking etc.), in such cases CoreVM requests the ShellVM to process them.

To abstract away the lack of cache coherence in the SPEs CellVM employs a software

instruction cache (I-Cache) as well as a software data cache (D-Cache). The local mem-

ory of the SPEs is divided into three segments. About half of the memory is reserved

for the CoreVM’s binary. One of the remaining two quarters is reserved for the I-Cache

and the D-Cache, while the last quarter is used for the Java stack.

The I-Cache keeps copies of whole methods, thus a fixed cache block size does not ap-

ply. The I-Cache is fully associative and uses the method’s address in the main mem-

ory as a tag. In the case of a I-Cache miss if there is no sufficient space to fetch the

requested method all cached methods are invalidated.

The D-Cache on the other hand is direct mapped to reduce the lookup latency. The

D-Cache configuration (number of cache lines and cache block size) is performed at

compile time. Write backs occur in two cases. When there is a conflict miss and when

the code switches from the CoreVM to the ShellVM.

Note that, according to Noll et al. CellVM fails to provide a coherent Java heap, thus it

does not strictly comply to the Java memory model [70, 72]. Noll et al. claim that this was

a design decision to improve performance. Additionally, its design does not scale on a

large number of cores since it resides on a single coordinator, the ShellVM, and requires

all CoreVMs to communicate with it. Such master-servant models are efficient up to a

certain number of servants, on a large number of cores the coordinator is expected to

become a bottleneck.

2.2.6. Hera-JVM

Hera-JVM [73] is another virtual machine targeting the IBM’s Cell BE processor. Hera-

JVM differs from CellVM in that

• it offers transparent migration of Java threads between the two core types (PPEs

and SPEs),

• it is designed as a single VM,

• it improves scalability by enabling SPEs to execute synchronization instructions,

allocate memory, etc.,

• it adheres to the Java memory model [70, 72].

15

Chapter 2. Background and State of the Art F. Zakkak

Hera-JVM implements a JIT compiler targeting both the PPE and the SPEs. The byte-

code of a method is compiled to the instruction set of the target core before migration.

Java thread migrations are only allowed at method invocations to reduce complexity.

Hera-JVM achieves up to 13× speedup when compared with single core executions on

the PPE.

In Hera-JVM each SPE core acts as a virtual processor. Each virtual processor has a

private run queue with Java threads. Java threads run for a full time quantum unless

they block (e.g. acquiring a lock). When a thread consumes its time quantum or blocks,

the next thread is scheduled for execution in a round robin fashion. Furthermore, at

scheduling points, the virtual processor checks the other virtual processors queues and

load balances the system if needed by transferring threads accordingly.

In Hera-JVM the Java thread stack, contrary to CellVM, is located in the main memory

and only the top part of it (16KiB) is locally available. This is done to enable migration

without having to move all the data around. In the case of a (local) stack overflow the

current the current block is transferred to the main memory and the next one takes its

place.

Hera-JVM also uses a data cache for data in the Java heap. Hera-JVM caches objects

or array blocks. There are four different Java bytecodes to access memory; getfield,

setfield, iaload and iastore. The getfield and setfield bytecodes are used

to access an object’s field. In these cases a cache miss results in the whole object

cached. While, the iaload and iastore bytecodes are used to access an array ele-

ment. In these cases Hera-JVM does not cache the whole array, but a 1KiB block of it,

as it could be too large. The software cache is implemented as a 1024-entry hashtable,

using as a key the main memory address of an object instance or an array block, while

the value is the local memory address of the cached data. On a cache miss a DMA

transfer is initiated to fetch the data and the Java thread blocks until the DMA is com-

pleted. The data cache is using a write through policy. Whenever a thread writes to a

cached address, a non-blocking DMA, copying the new data to the main memory, is ini-

tiated. However, in order to conform to the Java memory model, a Java thread blocks

until all DMAs are finished before releasing a lock, writing to a volatile variable, context

switching or migrating to another core.

Additionally, Hera-JVM implements an instruction software cache. Similarly to CellVM

caching operates on methods. Hera-JVM takes advantage of the standard method of

supporting virtual methods in a JVM. Hera-JVM uses a per SPE table of contents (TOC)

which acts as a cache directory for type information blocks (TIB) instead of methods.

TIBs are found in each object’s instance and contain an entry for each declared method

in the class. When a virtual method is invoked its class’s TIB is looked up in the local

TOC. If the class containing the class’s TIB is not cached the TOC points to the TIB’s

main memory address. When Hera-JVM caches a method, it copies the class instance’s

TIB to local memory; it updates the TOC with the TIB’s local memory address; it copies

16

F. Zakkak 2.2. Java Virtual Machines

the method’s code to the local memory; and updates the local TIB copy to point to the

local copy of the method.

In this work we target future many-core architectures with hundreds of cores. Such

architectures differ from super-computer clusters in that all the communication is per-

formed on chip. As a result, they feature significantly lower network latency and pos-

sibly higher network throughput than super-computer clusters. On the other hand, Cell

B.E. shares many common characteristics with that of the proposed future many core

architectures [20, 29, 66]. However, the low number of cores, on Cell B.E., allows for

centralized designs, like CellVM, that use the more powerful PPE as a server, han-

dling synchronization requests. Moreover, although Hera-JVM appears to be better dis-

tributed than CellVM, due to the expected large number of cores in future architectures,

porting Hera-JVM from the Cell B.E. to a future many-core architecture is not certain to

provide the expected scalability.

17

Chapter 3.

The Memory Model

In this chapter we present the Java Distributed Memory Model (JDMM). JDMM is an ex-

tension of the Java Memory Model (JMM) that exposes cache management operations

and explicitly defines rules that govern the order in which those operations must appear

in respect to other Java operations in order for an execution to be valid. We provide the

formalization of JDMM, argue that JDMM-compliant executions are also JMM-compliant,

and finally use JDMM to show that Hera-JVM [73] complies to JMM.

Parts of the work presented in this chapter have been published in the proceedings

of the 2014 ACM SIGPLAN International Symposium on Memory Management (ISMM

2014) [103].

3.1. Introduction

As different architectures implement different consistency models, the same program

may behave differently on different machines. This results in reduced code portability

and requires the programmer to understand the consistency model of every architec-

ture she wants her program to run on. To solve this issue some languages, with builtin

multi-threading support, define their own memory model. Such examples are the Uni-

fied Parallel C (UPC) [25], C/C++ [51, 52], Java [70, 72], etc. The memory model is

essentially a description of the interaction between parallel threads through the mem-

ory. It defines the flow of the data from one thread, as defined by the language, to

another thread according to the synchronization between them. Every implementation

of a language, with a memory model specification, must adhere to the corresponding

memory model, irrespective of the consistency model of the underlying architecture. A

language’s programming model can also be seen as a contract between the program-

mers and the language implementers, since it specifies what a programmer should ex-

pect, and what the language runtime system or compiler guarantees.

Java was one of the first programming languages to define a memory model. The Java

Memory Model (JMM) is a relaxed memory model, according to which, data-race-free

(DRF) programs are guaranteed to be sequentially consistent. With sequential consis-

tency we refer to the property that requires that:

19

Chapter 3. The Memory Model F. Zakkak

“ [...] the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order specified by

its program.

– Lamport [56]”
Additionally, non DRF programs are guaranteed to be safe. In this context, safe means

that data-races do not result in any thread observing an out-of-thin-air value (except for

reads of long and double values). That is, all reads in a Java program return values that

have been written, to the corresponding variable, and not arbitrary ones. Under JMM,

non-DRF programs may result in non sequential consistent values of object fields, static

fields, or array elements that are being accessed without proper synchronization. Note

however, that properly synchronized accesses are sequentially consistent even in non-

DRF programs.

JMM is essentially a lazy release consistency model [55]. Lazy release consistency

assumes the existence of two special synchronization operations, called acquire and

release. In correctly synchronized programs, before modifying an object the program

needs to acquire it, and after modifying it needs to release it. In JMM acquire and

release correspond to a number of synchronization mechanisms provided by the lan-

guage. JMM abstracts program operations to actions (e.g., reads, writes, interrupts).

The actions concern only operations one could observe by monitoring the interface be-

tween the processor and the memory. Some of these actions are grouped in synchro-

nization actions and external actions. Synchronization actions, as their name implies,

are responsible for inter-thread communication and synchronization. Synchronization

actions are further grouped in acquire and release actions. Without the use of synchro-

nization actions, a write might never be seen by a different thread than the writer-thread.

However, this is by no means guaranteed, nor is the order in which such leaked writes

are observed by other threads. JMM, based on the synchronization actions and their or-

dering, defines the possible values that each read may observe. In general, any writes

visible to a thread executing a release action must become visible to the thread execut-

ing the corresponding acquire action. External actions are those observable out of the

program (i.e., I/O).

3.1.1. Motivation

In the x86 Total Store Order (x86-TSO) memory model [79], a memory fence is sufficient

to make any writes in the write-buffer and/or registers visible to any subsequent action,

and thus satisfy JMM. However, in the context of non-cache-coherent architectures, a

memory fence is not enough. The result of a memory fence in such architectures is

observable only on the local node. For the writes to become visible to all nodes, at

release actions, any writes must be committed to the main memory. To achieve this,

20

F. Zakkak 3.1. Introduction

the JVM needs to explicitly transfer data from the local node’s scratchpad to the main

memory. Then, the corresponding acquire action also needs to perform explicit data

transfers to get the data from the main memory.

To implement JMM in architectures like Runnemede, the Java Virtual Machine (JVM)

needs to explicitly move data across nodes. Unfortunately, moving data across nodes

for each remote memory access is prohibiting, due to the increased time and energy

overheads of these transfers compared to the corresponding overheads of local ac-

cesses. There is a lot of existing work on implementing a JVM over non-cache-coherent

machines and distributed computer systems [4, 5, 32, 68, 73, 100, 102, 107, 108].

Most implementations are older than JMM and they are based on the second edition of

the Java Language Specification (without the updates introduced by JSR-133). These

implementations follow three different approaches, regarding how they access remote

data. Aridor et al. [5] and Zigman et al. [108] avoid transferring data by using object

proxies; instead of transferring data, the operations on the data are performed on the

node having the corresponding object on its local heap-slice. Other implementations [4,

73] use a custom software cache and implement some form of a hardware cache co-

herence protocol or global directory in software. The rest [32, 100, 102, 107, 108] use

Software Distributed SharedMemory (SDSM). SDSMand custom software caches have

two common properties: (i) to access an object, they need to create a local copy; and (ii)

to make writes visible to other processors they need to write-back the data to the main

memory and also make sure that any local copies of these data are updated.

The SDSM approach is the simplest to implement, since the developers can design the

JVM as they would do for a shared memory machine with cache coherency. SDSM

is responsible to ensure that all nodes have a coherent, according to some coherence

protocol, view of the shared data. SDSM systems, however, produce more traffic than

needed by JMM. JMM is a relaxed memory model, while SDSMs usually implement

more strict coherence protocols. The model we propose in this work can help future

JVM implementers to choose the more relaxed available coherence protocol for their

SDSM based implementation.

The use of custom software caches, on the other hand, enables JVM developers to im-

prove performance by moving data, only when that is mandatory to comply with JMM.

Unfortunately, the efficient implementation of the custom software cache as well as the

data movement mechanisms is a tedious and error prone process. Furthermore, it re-

quires good understanding of JMM to minimize the data movement while preserving

JMM’s properties. JMM’s abstract nature does not make clear when those data trans-

fers should be performed. The work presented in this chapter aims to demystify JMM

and the ways it can be implemented using software managed data caches. We achieve

this by exposing cache management operations to the memory model and introducing

new rules that dictate when such cache management operations should be performed

in order to preserve JMM’s properties.

21

Chapter 3. The Memory Model F. Zakkak

3.1.2. Approach

To minimize the effort needed to understand JDMM we build it by extending JMM. This

way we are able to use well established, in the Java era, definitions, notations, and

mechanisms.

Previous work on proving JMM’s DRF guarantee [72] has shown that JMM is correct [6,

7, 42, 45, 65, 89, 97], in the sense that correctly synchronized programs have sequen-

tially consistent semantics. However, Aspinall and Ševčı́k [7, §5] show that there are

still some counterexamples to JMM regarding the out-of-thin-air guarantee. Specifically,

the following transformations are allowed under JMM, but might cause out-of-thin-air

values to be seen under specific circumstances:

1. Reordering of Independent statements (also mentioned in [21, §7]).

2. Reordering of memory accesses with external actions.

3. Moving memory accesses into synchronized blocks. Also known as “roach motel”

ordering [70, §3.5.1].

Additionally, Manson et al. have introduced a set of causality tests [83] to describe a

series of examples of unacceptable causal loops and seemly causal loops that must be

allowed by the semantics. According to Manson et al. [72] JMM should satisfy all the

causality test cases. However, Aspinall and Ševčı́k [7] claim that test cases 17–20 [83]

are not satisfied by JMM, while Torlak et al. [97] show that only the test cases 19 and

20 [83] are not satisfied by JMM.

To make the first group of transformations safe under JMM and to make it pass the

causality tests, Aspinall and Ševčík [6] propose a change to JMM that Lochbihler [65]

proves correct. Furthermore, Lochbihler shows that the Java Language Specification

(JLS) [36] and Java API define extra communication channels between Java threads

than those JMM covers. In his work, Lochbihler, covers these communication channels

as well as dynamic memory allocation, thread spawning and joining, infinite executions,

the wait-notify mechanism and interruption. Since Lochbihler’s work provides a more

complete and concise definition of JMM properties, in our thesis we use some of its defi-

nitions and formalization over the original definition of the JMM [70] for clarity. Moreover,

at the time of writing there is an OpenJDK project in progress aiming to reformulate the

base model of JMM [47]. The main targets of this project are:

• The improvement of JMM’s formalization to make it machine checkable, as well

as, more human readable.

• The fix of existing errors as reported by Aspinall and Ševčı́k and Torlak et al. [97].

• The coverage of JVM related aspects, like class initialization. Currently JMM fo-

cuses on the Java programming language and not to its bytecode. This results in

22

F. Zakkak 3.2. The formalization of JMM

ambiguous definitions about some JVM operations and the use of the Java byte-

code by other languages.

• The coverage of java.util.concurrent’s parts (e.g. AtomicInt.weakCom-

pareAndSet), as well as, any extensions that my arise from forthcoming JDK

Enhancement Proposals (JEPs).

• To provide compatibility with the C11 and C++11 standards, aiming to provide a

consistent behavior across Java and C/C++ native libraries.

• To provide a technical document to guide JVM implementors, JDK library devel-

opers, and developers, explaining how JMM impacts particular problems and so-

lutions.

• To provide tests for conformance to JMM.

• To provide an interface or hints for analysis tools that check for data-races and

security properties across multiple threads.

Since, until the time of this writing, the proposed fixes concern only the validation pro-

cedure of JMM, in our work we choose to not introduce any modifications to it. Instead

we build JDMM on JMM by extending a few definitions and especially that of the well-

formed executions. Under JMM an execution is considered to be well-formed if a set

of conditions is satisfied, and only well-formed executions are considered for validation.

In this work we essentially define how cache management actions should be ordered in

respect to the other actions of the execution, by introducing new well-formedness con-

ditions. That said, we believe that any future alternations of the validation procedure of

JMM are orthogonal to our work and will not impact its correctness nor its contributions.

3.2. The formalization of JMM

This section presents a summary of the formal definition of JMM, as introduced by Man-

son [70] and Lochbihler [65], that we use in the rest of this paper, since our memory

model builds on the existing JMM formalization. Note that the formal definitions pre-

sented in this section have no modifications over the original definitions, introduced by

Manson and Lochbihler, except for renaming of variables for clarity. Intuitively, JMM de-

fines the legal executions of a program 𝑃 as a set 𝐴 of actions, restricting the order in

which actions can become visible, or committed during the execution. In the following

definitions, unless explicitly specified otherwise, when referring to actions 𝑥 and 𝑦, we
mean ∀𝑥, 𝑦 ∈ 𝐴.

23

Chapter 3. The Memory Model F. Zakkak

3.2.1. Definitions

Variable: According to JMM [72, §4.1] a variable can be: a static variable of a loaded

class, a field of an allocated object, or an element of an allocated array. In general, a

variable is a memory location in the Java heap. Variables can contain references to

objects or primitive values. As a result, their size depends on the JVM implementation

and the underlying system.

Actions: JMM abstracts thread operations as actions [70, §5.1]. An action is a tuple

⟨𝑡, 𝑘, 𝑣, 𝑢⟩, where 𝑡 is the thread performing the action; 𝑘 is the kind of action; 𝑣 is the

(runtime) variable, monitor, or thread, involved in the action; and 𝑢 is a unique, among

the actions, identifier.

In Table 3.1 we present the abbreviations we use to describe all possible kinds of actions.

Our abbreviations are similar to those introduced in [64, §1.1].

Table 3.1.: Abbreviations for JMM Action Kinds

Abbreviation Description

R Non-volatile read

W Non-volatile write

In Initialization write

Vr Volatile read

Vw Volatile write

L Monitor enter

U Monitor exit

St Thread start

Fi Thread final action

Ir Thread interrupt

Ird Interrupt detection

Sp Thread spawn (Thread.start())

J Thread join (Thread.join())

Ex External actions and I/O

Synchronization Actions: Any actions with kind In, Ir , Ird , Vr , Vw , L, U , St , Fi , Sp,
or J are synchronization actions, which form the only communication mechanism be-

tween threads according to JMM. We use 𝑥 ∈ SA(𝐴) to show that 𝑥 is a synchronization

action in 𝐴, where 𝐴 is a set of actions:

SA(𝐴) = {𝑥 ∈ 𝐴 ∶ 𝑥.𝑘 ∈ {In , Ir , Ird ,Vr ,Vw ,L,U ,St ,Fi ,Sp, J}}

24

F. Zakkak 3.2. The formalization of JMM

Program Order: The partial order ≤𝑝𝑜 among actions 𝐴 of an execution that defines

a total order over all the actions executed by any single thread 𝑡 is the program order.

We use 𝑥 ≤𝑝𝑜 𝑦 to show that 𝑥 comes before 𝑦 according to the program order within a

thread. Every pair of actions executed by a single thread 𝑡 are ordered by the program

order:

((𝑥 ≠ 𝑦) ∧ (𝑥.𝑡 = 𝑦.𝑡)) ⇔ ((𝑥 ≤𝑝𝑜 𝑦) ∨ (𝑦 ≤𝑝𝑜 𝑥))

Synchronization Order: A total order over all the synchronization actions of a pro-

gram execution. Note that JMM considers only synchronization orders consistent with

the program order to preserve intra-thread semantics. We use 𝑥 ≤𝑠𝑜 𝑦 to show that 𝑥
comes before 𝑦 according to the synchronization order. Every pair of synchronization

actions are ordered by synchronization order.

((𝑥 ≠ 𝑦) ∧ (𝑥, 𝑦 ∈ SA(𝐴))) ⇔ ((𝑥 ≤𝑠𝑜 𝑦) ∨ (𝑦 ≤𝑠𝑜 𝑥))

Synchronizes-With: We use 𝑥 ≤𝑠𝑤 𝑦 to show that 𝑥 synchronizes-with 𝑦, where 𝑥 ≠ 𝑦.
Note that 𝑥 ≤𝑠𝑤 𝑦 ⇒ 𝑥 ≤𝑠𝑜 𝑦. In the synchronizes-with pairs to follow, when comparing

the variable 𝑣 of one action with the thread 𝑡 of the other (i.e., 𝑥.𝑡 = 𝑦.𝑣) means that 𝑦
acts on thread 𝑥.𝑡.

An action 𝑥 synchronizes-with an action 𝑦, written 𝑥 ≤𝑠𝑤 𝑦, when:

• 𝑥 is the initialization of variable 𝑣 (to zero, false, or null) and 𝑦 is the first action
of any thread:

((𝑥.𝑘 = In) ∧ (𝑦.𝑘 = St))

• 𝑦 is any subsequent (according to synchronization order) read of the volatile vari-

able written by 𝑥:

(𝑥.𝑘 = Vw) ∧ (𝑦.𝑘 = Vr) ∧ (𝑥 ≤𝑠𝑜 𝑦)

• 𝑦 is any subsequent (according to synchronization order) lock of the monitor that

𝑥 unlocked:

(𝑥.𝑘 = U) ∧ (𝑦.𝑘 = L) ∧ (𝑥.𝑣 = 𝑦.𝑣) ∧ (𝑥 ≤𝑠𝑜 𝑦)

• 𝑦 is the start action of thread 𝑡 and 𝑥 is the spawn of 𝑡:

(𝑥.𝑘 = Sp) ∧ (𝑦.𝑘 = St) ∧ (𝑥.𝑣 = 𝑦.𝑡)

25

Chapter 3. The Memory Model F. Zakkak

• 𝑦 is an invocation to Thread.join() or Thread.isAlive() that returns false
and 𝑥 is the final action of this thread:

(𝑥.𝑘 = Fi) ∧ (𝑦.𝑘 = J) ∧ (𝑥.𝑡 = 𝑦.𝑣)

• 𝑦 is an action detecting if a thread has been interrupted and 𝑥 is an interrupt to

that thread:

(𝑥.𝑘 = Ir) ∧ (𝑦.𝑘 = Ird) ∧ (𝑥.𝑣 = 𝑦.𝑣)

• 𝑦 is the implicit read of a reference to the object being finalized and 𝑥 is the end of

the constructor of this object.

In a synchronizes-with pair 𝑥 ≤𝑠𝑤 𝑦, the 𝑥 action is called a release action and the

𝑦 action is called an acquire action. According to JMM a release action must make

all writes, visible to the executing thread, visible to the actions following (according to

the transitive closure of the program order and the synchronizes-with order) the acquire

action.

Happens-Before Order: The happens-before notion is the one introduced by Lamport

in [57]. In the context of JMM this is the transitive closure of the program order and the

synchronizes-with order. We use 𝑥 ≤ℎ𝑏 𝑦 to show that 𝑥 happens-before 𝑦.

Write-seen Function: The write-seen function 𝑊 (𝑟) for every read action 𝑟 returns

the write action seen by 𝑟. As a result, 𝑊 (𝑟).𝑣 = 𝑟.𝑣.

Value-written Function: The value-written function 𝑉 (𝑤) returns the value written for
every write action 𝑤; every read 𝑟 reads the value 𝑉(𝑊 (𝑟)).

Execution: JMM defines an execution 𝐸 as a tuple:

𝐸 = ⟨𝑃 , 𝐴, ≤𝑝𝑜, ≤𝑠𝑜,W (),V (), ≤𝑠𝑤, ≤ℎ𝑏⟩

We summarize the definitions of the notation used in this tuple in Table 3.2.

Conflicting Accesses: If one of two accesses to the same variable is a write then

these two accesses are conflicting.

Data-Race: A data-race occurs when two conflicting accesses may happen in parallel.

That is, they are not ordered by happens-before.

26

F. Zakkak 3.2. The formalization of JMM

Table 3.2.: Definition of JMM Notation

Notation Description

𝐸 Program execution

𝑃 Java program

𝐴 Set of actions

≤𝑝𝑜 Program order

≤𝑠𝑜 Synchronization order

W () Write-seen function

V () Value-written function

≤𝑠𝑤 Synchronizes-with order

≤ℎ𝑏 Happens-before order

Correctly Synchronized or Data-Race-Free Program: A program is correctly syn-

chronized or DRF if and only if all sequentially consistent executions are free of data-

races.

Well-FormedExecutions: JMMconsiders only well formed executions. We useWF (𝐸)
to show that the execution 𝐸 is well formed. According to JMM, an execution

𝐸 = ⟨𝑃 , 𝐴, ≤𝑝𝑜, ≤𝑠𝑜,W (),V (), ≤𝑠𝑤, ≤ℎ𝑏⟩

is well-formed under the following conditions (refer to [70, §5.3] for a more detailed

description):

WF-1: Each read of a variable 𝑣 sees a write to 𝑣:

∀𝑥 ∈ 𝐴 ∶ (𝑥.𝑘 = R) ⇒ ∃𝑦 ∈ 𝐴 ∶ (𝑊 (𝑥) = 𝑦)

WF-2: All reads and writes of volatile variables are volatile actions:

∀𝑥 ∈ 𝐴 ∶ 𝑥.𝑘 ∈ {Vw ,Vr} ⇒ ∄𝑦 ∈ 𝐴 ∶ (𝑦.𝑘 ∈ {𝑅, 𝑊 }) ∧ (𝑥.𝑣 = 𝑦.𝑣)

WF-3: The number of synchronization actions preceding another synchronization ac-

tion 𝑦 is finite:

∀𝑦 ∈ SA(𝐴) ∶ #{𝑥 ∈ SA(𝐴) ∶ 𝑥 ≤𝑠𝑜 𝑦} < ∞

WF-4: Synchronization order is consistent with program order:

∀𝑥, 𝑦 ∈ 𝐴 ∶ ((𝑥.𝑡 = 𝑦.𝑡) ∧ (𝑥 ≤𝑠𝑜 𝑦)) ⇒ (𝑥 ≤𝑝𝑜 𝑦)

27

Chapter 3. The Memory Model F. Zakkak

WF-5: Lock operations are consistent with mutual exclusion. The number of lock ac-

tions performed by any thread 𝑡′ before the lock action 𝑙 performed by thread 𝑡 on
the monitor 𝑚, according to the synchronization order, must be equal to the num-

ber of unlock actions performed by thread 𝑡′ before 𝑙 on the monitor 𝑚:

∀𝑥 ∈ 𝐴 ∶ ∀𝑡 ∈ 𝑇 ∶ (𝑥.𝑘 = L) ∧ (𝑥.𝑡 ≠ 𝑡)
⇒ #{𝑦 ∈ 𝐴 ∶ (𝑦.𝑡 = 𝑡) ∧ (𝑦.𝑘 = L) ∧ (𝑦.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑠𝑜 𝑥)}

= #{𝑧 ∈ 𝐴 ∶ (𝑧.𝑡 = 𝑡) ∧ (𝑧.𝑘 = U) ∧ (𝑧.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑠𝑜 𝑥)}

where 𝑇 is the set of all the execution threads:

𝑇 = {𝑡 ∶ (∃𝑥 ∈ 𝐴 ∶ 𝑡 = 𝑥.𝑡)}

WF-6: The execution obeys intra-thread consistency.

∀𝑟 ∈ 𝐴 ∶ (¬(𝑟 ≤𝑝𝑜 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴 ∶ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑝𝑜 𝑤 ≤𝑝𝑜 𝑟))

WF-7: The execution obeys synchronization-order consistency:

∀𝑟 ∈ 𝐴 ∶ (𝑟.𝑘 = Vr) ⇒ (¬(𝑟 ≤𝑠𝑜 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴 ∶ (𝑤.𝑘 = Vw)

∧ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑠𝑜 𝑤 ≤𝑠𝑜 𝑟))

WF-8: The execution obeys happens-before consistency:

∀𝑟 ∈ 𝐴 ∶ (¬(𝑟 ≤ℎ𝑏 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴 ∶ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤ℎ𝑏 𝑤 ≤ℎ𝑏 𝑟))

Lochbihler in [65, §2.4.3] additionally requires that:

WF-9: Every thread’s start action happens-before its other actions except for initializa-

tion actions:

∀𝑥, 𝑦, 𝑧 ∈ 𝐴 ∶ ((𝑥.𝑘 = In) ∧ (𝑦.𝑘 = St) ∧ (𝑧.𝑘 ∉ {𝑆, In})) ⇒ (𝑥 ≤ℎ𝑏 𝑦 ≤ℎ𝑏 𝑧)

Intuitively, an execution of a Java program can be visualized as a graph, where the ac-

tions are nodes connected by synchronizes-with and program order edges, as in Fig-

ure 3.1. An action 𝑥 happens-before an action 𝑦 if and only if there is a path in the graph
that connects 𝑥 and 𝑦. Figure 3.1 visualizes program order edges using solid arrows and

synchronizes-with edges using dashed arrows. As implied by the program order, ac-

tions in the same row are executed by a single thread. To maintain JMM properties, any

code optimization must preserve all the synchronizes-with edges, the happens-before

edges and the intra-thread consistency of the program.

28

F. Zakkak 3.2. The formalization of JMM

… Sp L W U Fi

… L R U J Vr …

St Vw Vw R Vr Fi

Figure 3.1.: Actions ordering visualization

3.2.2. Validation procedure:

As described in [70, §5.4], JMM, validates well-formed executions by committing actions

from 𝐴. If all actions can be committed then the execution is considered legal. The val-

idation procedure aims to enforce the happens-before order while allowing concurrent

execution of non-ordered actions. The validations procedure starts with an empty set

of actions, 𝐶0, and performs a sequence of steps, committing a set of actions at each

step. The set of actions that have been committed at step 𝑖 is denoted by 𝐶𝑖. The set

of actions committed at each step is a superset of the set of actions committed in the

previous step, 𝐶𝑖 ⊂ 𝐶𝑖+1. To enforce the ordering of actions JMM defines a set of re-

strictions regarding which actions may be committed at each step. These restrictions

essentially state that:

1. the actions in a set 𝐶𝑖 must exist in 𝐴,

2. the commit order needs to preserve the partial orders obtained by restricting the

happens-before order to the actions in the corresponding commit set 𝐶𝑖,

3. the commit order must preserve the partial orders obtained by restricting the syn-

chronization orders to the actions in the corresponding commit set 𝐶𝑖,

4. the values written by actions in 𝐶𝑖 must be the same as those written by these

actions in 𝐸,

5. the values read in by actions in 𝐶𝑖−1 must be the same as those read by these

actions in 𝐸,

6. the values read in by actions in 𝐶𝑖 − 𝐶𝑖−1 must be written by a write in 𝐶𝑖−1 but are

not restricted to be the same as those in 𝐸, moreover, they must be written by a

write that happens-before the corresponding read in 𝐶𝑖,

7. release-acquire pairs appearing in a step 𝑖 must persist in later steps 𝑗 ≥ 𝑖,

29

Chapter 3. The Memory Model F. Zakkak

8. if an action is committed, all external actions that happen-before it are also com-

mitted.

3.2.3. JMM Guarantees

JMM also gives a number of guarantees to compiler developers, JVM implementers,

and Java programmers [72, §3]. We shortly present these guarantees in this section.

DRF: Data-race-free programs, also referred as correctly synchronized, have sequen-

tially consistent semantics.

Reorder 1: Adjacent statements that are independent can be reordered.

Reorder 2: Actions that a compiler can detect that always end up happening, with the

same side-effects, can be re-ordered regardless of dependencies.

Happens-Before (HB): Volatile writes are ordered before subsequent volatile reads

of the same variable. Monitor exits are ordered before subsequent monitor enters of the

same monitor.

Redundant-Synchronization (RS): Synchronization actions that only introduce re-

dundant happens-before edges can be treated as if they don’t introduce any happens-

before edges.

Roach Motel: Accesses outside of a critical section can be moved inside it, but not

the opposite.

Volatile Atomicity: All accesses to volatile variables are performed in a total order.

Strong Volatile: There must be a happens-before relationship from each write to each

subsequent read of that volatile.

Thin-air 1: As long as the early execution of a write does not result in subsequent

reads seeing non-sequentially consistent values, that write can occur earlier in an exe-

cution than it appears in program order.

30

F. Zakkak 3.3. The Distributed Model

Thin-air 2: As long as the early execution of a write does not result in reads seeing

values via a data race, that write can occur earlier in an execution than it appears in

program order.

Isolation: Consider a partitioning of the threads and variables of a program, such that

all threads that accessed a variable are grouped in the same partition 𝑃 along with that

variable, as well as any other variables they access. Given 𝑃, one is able to understand
the execution of the threads and the values of the variables contained in that partition

without examining any other partition of the program.

Observable: The only reason that an action visible to the external world (e.g., a file

read/write, program termination) might not be observable is if there is an infinite se-

quence of actions that might happen before it or come before it in the synchronization

order.

The aim of this work is to provide an extension of JMM that exposes cache management

operations, making their ordering requirements clear to the reader, while providing the

same guarantees with JMM as described here.

For in depth understanding of JMM the reader is referred to
the following resources:

• The JSR-133 Cookbook for Compiler Writers [96]

• JSR-133 Java Memory Model and Thread Specification [50]

• SPECIAL POPL ISSUE: The Java Memory Model (not pub-
lished) [71]

• Manson's Ph.D. Thesis [72]

Note:

3.3. The Distributed Model

In this section we present our Java Distributed Memory Model (JDMM). We essentially

extend the formalization of JMM by making it aware of cache management operations.

We follow a similar approach to the x86 Total Store Order definition [79]. We first define

an abstract machine model and then use it to define well-formed executions for JDMM.

31

Chapter 3. The Memory Model F. Zakkak

3.3.1. The JDMM's Abstract Machine Memory Model

As stated in Chapter 1, larger numbers of cores lead processor designers towards using

non-cache-coherent memories, also known as scratchpad memories. This approach

simplifies the processor’s design and verification, and improves performance and en-

ergy efficiency. On the other hand, it renders the application responsible for keeping

the memory consistent. With the latter being a tedious and error prone process; es-

pecially in hierarchical architectures, featuring multiple levels of scratchpad memories,

like SCC [39], Runnemede [20] and the Formic-Cube [66, 67].

In our abstract machine memory model, we assume a single level of scratchpad mem-

ories for simplicity. Although simpler, this abstract machine model maintains the same

properties as a machine with multiple levels of scratchpad memories regarding consis-

tency. Multiple levels of scratchpad memories are mainly used to improve performance

with reasonable cost. The low level scratchpad memories are faster and more expen-

sive per byte while the higher level ones are slower and the cost per byte is lower. Note

that we omit hardware data caches from our abstract machine memory model. Hard-

ware caches in non coherent architectures are usually software managed. As a result,

we can treat them like software data caches. In the rest of this section, when we refer

to caches we mean both hardware and software data caches.

To achieve better performance, the design of a software cache is usually heavily con-

nected to the underlying design of the actual memory hierarchy. In our work we aim to

abstract over the actual memory architecture as much as possible, while targeting dis-

tributed memory or non-cache-coherent memory systems. To do that, we keep a sim-

plified model of a non-cache-coherent memory, where software caches copy remote

data to and from a local scratchpad memory. Such a design improves performance by

reducing network on chip (NoC) traffic and access latency. We assume three actions

that the memory system can take to change the state of a software cache:

• fetch: copies data from remote scratchpads to the local scratchpad. The data

copies in the local scratchpad are called cached.

• write-back: writes back dirty cached data to the remote scratchpad from where

they were fetched. Dirty are any cached data that have been written in the local

scratchpad and not yet written back.

• invalidate: removes cached data from the local scratchpad.

These actions are abstract enough to capture the behavior of a wide range of systems,

including existing coherence protocols (i.e., MESI, MSI, MOESI). We believe that these

actions could not be more abstract without hiding the communication or more concrete

without supposing a specific memory hierarchy or messaging protocol.

Figure 3.2 presents an instance of our abstract machine. On the left side there are

several computation blocks with four cores in each of them. Each computation block

connects directly to its local scratchpad memory. We slice the scratchpad memory into

32

F. Zakkak 3.3. The Distributed Model

a local and a global slice. The local slice is used to cache remote data while the global

slice is used as a slice of a global address space, similarly to Partitioned Global Address

Space (PGAS) models. In this model, each local slice connects with every other global

slice in the system, but not with any local slice. The connections are bi-directional:

a core can copy data from a remote global slice to the local slice; after finishing the

job it can transfer back the new data, if any. In this abstract machine the state of the

memory, marked as a light gray rectangle with dashed surrounding, is driven by the

computation units. The only way to modify the state of the abstract machine’s memory

is by committing fetch, write-back and invalidate actions, as described above.

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

State of the MemoryState of the Memory

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Figure 3.2.: The abstract machine

Although the local slice is used for caching remote data to increase efficiency and reduce

data-transfers, it can also be used for all the local data (i.e., Java stacks). Overall,

the Java Heap is split and stored across all global slices, so that a total —virtual—

Java Heap consists of all the contents of all global slices, similarly to Partitioned Global

Address Space (PGAS) models.

3.3.2. The Java Distributed Memory Model

To simplify the definition of the core JDMM and the reasoning about its correctness,

we initially assume that all accesses to heap-based locations go through the cache,

even when they reside in the local heap-slice. Furthermore, we assume that threads

may not be context switched or migrated, thus caches are private per Java thread. We

also do not take into account final fields, which are specially handled by JMM. We later

33

Chapter 3. The Memory Model F. Zakkak

examine and discuss these subjects in Section 3.3.3, Section 3.3.4, Section 3.3.5, and

Section 3.3.7.

Regarding the way that software managed caches operate we make the following as-

sumptions aiming to cover as many cache models as possible. As in hardware caches,

when reading a variable, the system first checks if the variable at hand is present in the

cache. When present, the cache immediately returns the cached data, whereas if not

present it produces a cache miss. In hardware caches, cache misses are usually han-

dled automatically by initiating a data transfer from the main memory to the cache while

blocking until this transfer completes. When done the cache returns the fetched value

and the execution proceeds. In software managed caches however it is not necessary

to handle cache misses this way, thus in our model we assume that cache misses are

explicitly handled by the cache. As a result we also assume that a cache can explicitly

issue write-backs, fetches, and self-invalidations. Additionally, we allow writes directly

on the cache without the need to previously fetch the corresponding variable, essentially

assuming that the cache operates at variables’ granularity or finer. Each cache slot is

assumed to feature a dirty and a valid bit, to show whether it needs to be written back

and if it is valid. Self-invalidates set the valid bit to zero, while write-backs set the dirty

bit to zero and transfer the dirty data back to the main memory. Cache slots hold up to a

single value per variable, meaning a cache can only hold a single version per variable.

Our JDMM definition and formalization extends the definition of JMM discussed in Sec-

tion 3.2. We extend the notion of an action with additional kinds that capture the extra

functionality of the abstract machine described in Section 3.3.1, and extend the defi-

nition of an execution with additional constructs that capture relations between these

additional actions.

In the rest of this section, we refer to hardware threads as cores and to Java threads

as threads. Furthermore, unless explicitly specified otherwise, we use variable 𝑡 for
threads, 𝑣 for variables, 𝑟 for read actions (including volatile reads), 𝑤 for write actions

(including volatile writes), 𝑖 for initialization actions, 𝑠 for thread start actions, 𝑓 for fetch

actions, 𝑝 for invalidation actions, 𝑏 for write-back actions, and 𝑥, 𝑦, 𝑧 to name actions

of any kind. We summarize the meaning of each symbol in Table 3.3.

To define JDMM we extend JMM as follows.

Cache Actions: We extend the available action kinds defined in Section 3.2 by adding

three new action kinds that can change the cache state (see Section 3.3.1). Namely,

these action kinds are:

• F for fetches of heap-based variables,

• B for write-backs of heap-based variables,

• Iv for invalidations of cached variables.

34

F. Zakkak 3.3. The Distributed Model

Table 3.3.: Commonly used symbols

Symbol Description

𝑡 Thread

𝑣 Variable

𝑟 Read action

𝑤 Write action

𝑖 Initialization action

𝑠 Thread start action

𝑓 Fetch action

𝑝 Invalidate action

𝑏 Write-back action

𝑥, 𝑦, 𝑧 Actions of any kind

Note that actions of kind 𝐹 or 𝐵 are also synchronization actions, since they implement

a communication channel between threads, so we adapt the definition of the set SA
accordingly. We denote the set of all actions in an execution of the JDMM as 𝐴𝐷. In

Table 3.4 we present a revised version of Table 3.1 including the new action kinds.

Functions: We introduce four new functions, similar to 𝑉 () and 𝑊 ():

• The cache-action-seen function Cs(𝑟), which for each read 𝑟 gives the fetch or

write action, that cached 𝑟.𝑣, seen by 𝑟. Note that Cs(𝑟) ≤𝑑
𝑝𝑜 𝑟, Cs(𝑟).𝑣 = 𝑟.𝑣, and

Cs(𝑟).𝑘 ∈ {𝑊 , 𝐹 }.

• The write-back-fetched function Bf (𝑓), which for each fetch 𝑓 gives the write-back

action whose data 𝑓 fetches. Bf (𝑓) ≤𝑑
𝑠𝑜 𝑓, where ≤𝑑

𝑠𝑜 is the analogous of ≤𝑠𝑜 for

𝐴𝐷 instead of 𝐴, Bf (𝑓).𝑣 = 𝑓.𝑣, and Bf (𝑓).𝑘 = B .

• The action-written-back function Ab(𝑏), which for each write-back 𝑏 gives the ini-

tialization write, write, or volatile write action that 𝑏 writes back. Ab(𝑏) ≤𝑑
𝑝𝑜 𝑏,

Ab(𝑏).𝑣 = 𝑏.𝑣, and Ab(𝑏).𝑘 ∈ {In , 𝑊 ,Vw}.

• The action-invalidated function Ai (𝑝), which for each invalidation 𝑝 gives the write
or fetch action that cached the data that 𝑝 invalidates. Ai (𝑝) ≤𝑑

𝑝𝑜 𝑝, Ai (𝑝).𝑣 = 𝑝.𝑣,
and Ai (𝑝).𝑘 ∈ {𝑊 , 𝐹 }.

Note also that for each function 𝑓 above, 𝑓(𝑥).𝑣 = 𝑥.𝑣.

35

Chapter 3. The Memory Model F. Zakkak

Table 3.4.: Abbreviations for JDMM Action Kinds

Abbreviation Description

R Non-volatile read

W Non-volatile write

In Initialization write

Vr Volatile read

Vw Volatile write

L Monitor enter

U Monitor exit

St Thread start

Fi Thread final action

Ir Thread interrupt

Ird Interrupt detection

Sp Thread spawn (Thread.start())

J Thread join (Thread.join())

Ex External actions and I/O

F Fetch action

B Write-back action

Iv Invalidation action

Distributed Execution: A distributed execution 𝐸𝐷 is a tuple:

𝐸𝐷 = ⟨𝑃 , 𝐴𝐷, ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜,W (),V (),Cs(),Bf (),Ab(),Ai (), ≤𝑑
𝑠𝑤, ≤𝑑

ℎ𝑏⟩

where the program 𝑃 is a set of instructions; 𝐴𝐷 is a set of actions (including cache ac-

tions); the program order ≤𝑑
𝑝𝑜 is a relation on 𝐴𝐷 defining the order of actions per thread;

the synchronization order ≤𝑑
𝑠𝑜 is a relation on 𝐴𝐷 defining a global ordering among all

synchronization actions in 𝐴𝐷; the function W () on 𝐴𝐷 returns the write action seen by

every read action in 𝐴𝐷; the function V () on 𝐴𝐷 returns the value written by every write

action in 𝐴𝐷; the functions Cs, Bf , Ab, and Ai act as described in the previous para-

graph; the distributed synchronizes-with order ≤𝑑
𝑠𝑤 is the equivalent of ≤𝑠𝑤 for the set

of actions 𝐴𝐷, defining which actions in 𝐴𝐷 synchronize; and the happens-before order

≤𝑑
ℎ𝑏 is the equivalent of ≤ℎ𝑏 for the set of actions 𝐴𝐷, it defines a partial order among

actions in 𝐴𝐷 and is the transitive closure of ≤𝑑
𝑝𝑜 and ≤𝑑

𝑠𝑤. We summarize the definitions

of the notation used in this tuple in Table 3.5.

Well-Formed Distributed Execution: JDMM defines well-formed executions simi-

larly to JMM, by extending the set of well-formedness constrains with ten intuitive rules.

The additional rules we present are derived from the abstract machine memory model

36

F. Zakkak 3.3. The Distributed Model

Table 3.5.: Definition of JDMM Notation

Notation Description

𝐸𝐷 Distributed program execution

𝑃 Java program

𝐴𝐷 Set of actions

≤𝑑
𝑝𝑜 Program order

≤𝑑
𝑠𝑜 Synchronization order

W () Write-seen function

V () Value-written function

Cs() Cache-action-seen function

Bf () Write-back-fetched function

Ab() Action-written-back function

Ai () Action-invalidated function

≤𝑑
𝑠𝑤 Synchronizes-with order

≤𝑑
ℎ𝑏 Happens-before order

≤𝑑
𝑐𝑜 Cache order

discussed in Section 3.3.1. For brevity, in our formal definitions we use 𝐴𝐷 instead of

𝐸𝐷.𝐴𝐷 to denote a distributed execution’s set of actions. We useWF𝐷(𝐸𝐷) to show that

the distributed execution 𝐸𝐷 is well formed. Specifically, a distributed execution 𝐸𝐷 is

well-formed when:

WF-1 – WF-9: It satisfies conditionsWF-1 throughWF-9 as defined in Section 3.2, for

the new definitions of action set 𝐴𝐷, functions 𝑊 (), 𝑉 (), and relations ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜, ≤𝑑
𝑠𝑤

and ≤𝑑
ℎ𝑏 over 𝐴𝐷. For completeness we repeat conditionsWF-1 –WF-9 below.

WF-1: Each read of a variable 𝑣 sees a write to 𝑣:

∀𝑟 ∈ 𝐴𝐷 ∶ ∃𝑦 ∈ 𝐴𝐷 ∶ (𝑊 (𝑟) = 𝑦)

WF-2: All reads and writes of volatile variables are volatile actions:

∀𝑥 ∈ 𝐴𝐷 ∶ 𝑥.𝑘 ∈ {Vw ,Vr} ⇒ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑘 ∈ {𝑅, 𝑊 }) ∧ (𝑥.𝑣 = 𝑦.𝑣)

WF-3: The number of synchronization actions preceding another synchronization ac-

tion 𝑦 is finite:

∀𝑦 ∈ SA(𝐴𝐷) ∶ #{𝑥 ∈ SA(𝐴𝐷) ∶ 𝑥 ≤𝑑
𝑠𝑜 𝑦} < ∞

37

Chapter 3. The Memory Model F. Zakkak

WF-4: Synchronization order is consistent with program order:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ ((𝑥.𝑡 = 𝑦.𝑡) ∧ (𝑥 ≤𝑑
𝑠𝑜 𝑦)) ⇒ (𝑥 ≤𝑑

𝑝𝑜 𝑦)

WF-5: Lock operations are consistent with mutual exclusion. The number of lock ac-

tions performed by any thread 𝑡′ before the lock action 𝑙 performed by thread 𝑡 on
the monitor 𝑚, according to the synchronization order, must be equal to the num-

ber of unlock actions performed by thread 𝑡′ before 𝑙 on the monitor 𝑚:

∀𝑥 ∈ 𝐴𝐷 ∶ ∀𝑡 ∈ 𝑇 ∶ (𝑥.𝑘 = L) ∧ (𝑥.𝑡 ≠ 𝑡)
⇒ #{𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑡 = 𝑡) ∧ (𝑦.𝑘 = L) ∧ (𝑦.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑑

𝑠𝑜 𝑥)}
= #{𝑧 ∈ 𝐴𝐷 ∶ (𝑧.𝑡 = 𝑡) ∧ (𝑧.𝑘 = U) ∧ (𝑧.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑑

𝑠𝑜 𝑥)}

where 𝑇 is the set of all the execution threads:

𝑇 = {𝑡 ∶ (∃𝑥 ∈ 𝐴𝐷 ∶ 𝑡 = 𝑥.𝑡)}

WF-6: The execution obeys intra-thread consistency.

∀𝑟 ∈ 𝐴𝐷 ∶ (¬(𝑟 ≤𝑑
𝑝𝑜 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑

𝑝𝑜 𝑤 ≤𝑑
𝑝𝑜 𝑟))

WF-7: The execution obeys synchronization-order consistency:

∀𝑟 ∈ 𝐴𝐷 ∶ (𝑟.𝑘 = Vr) ⇒ (¬(𝑟 ≤𝑠𝑜 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑘 = Vw)

∧ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑
𝑠𝑜 𝑤 ≤𝑑

𝑠𝑜 𝑟))

WF-8: The execution obeys happens-before consistency:

∀𝑟 ∈ 𝐴𝐷 ∶ (¬(𝑟 ≤𝑑
ℎ𝑏 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑

ℎ𝑏 𝑤 ≤𝑑
ℎ𝑏 𝑟))

WF-9: Every thread’s start action happens-before its other actions except for initializa-

tion actions:

∀𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ ((𝑥.𝑘 = In) ∧ (𝑦.𝑘 = S) ∧ (𝑧.𝑘 ∉ {𝑆, In})) ⇒ (𝑥 ≤𝑑
ℎ𝑏 𝑦 ≤𝑑

ℎ𝑏 𝑧)

WF-10: Every read is preceded, according to program order, by a write or fetch action,

acting on the same variable as the read. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ ∃𝑥 ∈ 𝐴𝐷 ∶ (𝑥 ≤𝑑
𝑝𝑜 𝑟) ∧ 𝑥.𝑣 = 𝑟.𝑣) ∧ (𝑥.𝑘 ∈ {𝑊 , 𝐹 })

38

F. Zakkak 3.3. The Distributed Model

Recall that in our model all reads of heap-based variables see cached values,

and that context switching and thread migration are not supported. As a result, all

reads must find a copy of the corresponding variable in the cache. Since data get

cached only through writes or fetches, every read must be preceded, according

to program order, by at a write or fetch action, acting on the same variable as the

read.

WF-11: There is no invalidation, update, or overwrite of a variable’s cached value be-

tween, according to program order, the action that cached it and the read that sees

it. Formally:

∀𝑟, 𝑥 ∈ 𝐴𝐷 ∶ (𝑥 = Cs(𝑟))
⇒ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑘 ∈ {Iv , 𝐹 , 𝑊 }) ∧ (𝑥.𝑣 = 𝑦.𝑣) ∧ (𝑥 ≤𝑑

𝑝𝑜 𝑦 ≤𝑑
𝑝𝑜 𝑟)

Since the cache can only hold a single version per variable, this will be the last write

or fetch of that variable, according to program order. Additionally an invalidation

results in the removal of the cached copy from the cache. As a result, there cannot

be any invalidation, update, or overwrite of a variable’s cached value between the

action that cached it and the read that sees it.

In our memory model we are reasoning about cached data invalidations, while

there is no obvious use of them in JMM. In an ideal machine with infinite caches,

invalidations would be redundant. However, in real machines the cache size is

limited. At some point the cache becomes full and to fetch a variable it is obligatory

to invalidate another cached variable. If invalidations were left out of the memory

model we would not be able to reason about its correctness, especially when such

evictions and invalidations are not implemented in hardware, but are rather part

of the JVM.

WF-12: Fetch actions are preceded, according to synchronization order, by at least one

write-back of the corresponding variable. Formally:

∀𝑓 ∈ 𝐴𝐷 ∶ ∃𝑏 ∈ 𝐴𝐷 ∶ (𝑏.𝑣 = 𝑓.𝑣) ∧ (𝑏 ≤𝑑
𝑠𝑜 𝑓)

For a value to be fetched, it must first be written to the main memory. The only

way to write to the main memory, by definition, is through a write-back.

WF-13: Write-back actions are preceded, according to program order, by at least one

write to the corresponding variable. Formally:

∀𝑏 ∈ 𝐴𝐷 ∶ ∃𝑤 ∈ 𝐴𝐷 ∶ (𝑏.𝑣 = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑏)

For a variable to be written back, it must be dirty in some cache; a cached copy

becomes dirty only when written.

39

Chapter 3. The Memory Model F. Zakkak

WF-14: There are no other writes to the same variable between a write and its write-

back, according to program order. Formally:

∀𝑏, 𝑤 ∈ 𝐴𝐷 ∶ (𝑤 = Ab(𝑏)) ⇒ ∄𝑤′ ∈ 𝐴𝐷 ∶ ((𝑤′.𝑣. = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑤′ ≤𝑑

𝑝𝑜 𝑏))

Since the cache can only hold a single version per variable, this will be the last

write or fetch of that variable, according to program order. As a result, there cannot

be any other writes to the same variable between a write and its write-back.

WF-15: Only cached variables are invalidated. Formally:

∀𝑝 ∈ 𝐴𝐷 ∶ ∃𝑥 ∈ 𝐴𝐷 ∶ ∄𝑝′ ∈ 𝐴𝐷 ∶ (Ai (𝑝) = 𝑥) ∧ (Ai (𝑝) = Ai (𝑝′))

WF-16: Reads that see writes performed by other threads are preceded, according to

program order, by a fetch action that fetches the data of the corresponding write,

which were written back, and there is no other write-back of the corresponding

variable happening between the write-back and the fetch, according to synchro-

nization order. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ W (𝑟).𝑡 ≠ 𝑟.𝑡

⇒ ∃𝑏, 𝑓 ∈ 𝐴𝐷 ∶ (Ab(𝑏) = W (𝑟) ∧ Bf (𝑓) = 𝑏 ∧ 𝑓 ≤𝑑
𝑝𝑜 𝑟

∧ (∄𝑏′ ∶ 𝑏′.𝑣 = 𝑏.𝑣 ∧ 𝑏 ≤𝑑
𝑠𝑜 𝑏′ ≤𝑑

𝑠𝑜 𝑓))

Since all writes go through the cache, for a write to be seen by a read on a different

thread, there must exist a write-back action and a subsequent fetch action for it.

WF-17: Volatile writes are immediately written back, in the sense that no other action

happens between the volatile write and its write-back, according to the program

order. Formally:

∀𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑘 = Vw)

⇒ ∃𝑏 ∈ 𝐴𝐷 ∶ ∄𝑥 ∈ 𝐴𝐷 ∶ ((𝑤 = Ab(𝑏)) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑏))

Allowing other actions between a volatile write and its write-back may result in

other threads observing these actions as if they were executed before the volatile

write. This is similar to moving these actions before the volatile write, which is an

invalid reordering according to JMM.

WF-18: A fetch of the corresponding variable happens immediately before each volatile

read, in the sense that no other action happens between the corresponding fetch

and the volatile read, according to the program order. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ (𝑟.𝑘 = Vr) ⇒ ∃𝑓 ∈ 𝐴𝐷 ∶ ∄𝑥 ∈ 𝐴𝐷 ∶ (𝑓 = Cs(𝑟)) ∧ (𝑓 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑟))

40

F. Zakkak 3.3. The Distributed Model

The unconditional fetch of volatile variables before volatile reads is mandatory to

ensure that the volatile read will see the latest, according to happens-before order,

volatile write to the corresponding variable. Additionally, allowing other actions

between a volatile read and its fetch may result in other threads observing these

actions as if they were executed after the volatile read. This is similar to moving

these actions after the volatile read, which is an invalid reordering according to

JMM.

Note that in well-formedness constraintsWF-17 andWF-18, we chose not to em-

bed the write-back and fetch actions in the corresponding synchronization actions,

e.g., consider volatile writes to be of both kinds Vw and 𝐵. This way, the model

remains simple and as non-intrusive as possible to JMM. However, the JDMM re-

quires that the write-backs of volatile writes and the fetches of volatile reads are

executed immediately after and before the corresponding volatile action, respec-

tively.

WF-19: Initialization writes are immediately written back. Formally:

∀𝑥 ∈ 𝐴𝐷 ∶ (𝑥.𝑘 = In) ⇒ ∃𝑏 ∈ 𝐴𝐷 ∶ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑏 = Ab(𝑥)) ∧ (𝑏 ≤𝑑
𝑝𝑜 𝑦 ≤𝑑

𝑝𝑜 𝑥))

Although counter-intuitive this rule is needed to conform toWF-9.

Fetching already cached variables (re-fetch): Up to this point we did not mention

the case where a thread needs to fetch a variable which is already cached. According

to the well-formedness conditions, a thread needs to fetch a variable:

1. to read it, if not cached (see conditionWF-10);

2. to read a value written to it by a different thread (see conditionWF-16);

3. at every volatile read (see conditionWF-18).

Case 1 is trivial, since WF-10 is satisfied for already cached variables and there is no

need to re-fetch the variable. In case 2, when a thread performs a read 𝑟 that sees a
write 𝑊 (𝑟) performed by another thread, according to WF-16 𝑟 is preceded by a fetch

action 𝑓 that fetches the data of 𝑊 (𝑟), which were written back, and there is no other

write-back of the corresponding variable 𝑟.𝑣 happening between the write-back and the

fetch, according to synchronization order. In this case, if 𝑟.𝑣 is already cached before 𝑓
and that cached value is dirty, then there exists a write 𝑤, where 𝑟.𝑣 = 𝑤.𝑣 ∧ 𝑤.𝑡 = 𝑟.𝑡
that happens-before 𝑟. Under DRF programs 𝑤 and 𝑊 (𝑟) are ordered through happens-
before and since 𝑟.𝑡 needs to re-fetch 𝑟.𝑣 then 𝑤 happens-before 𝑊 (𝑟) and 𝑉 (𝑤) can be
dropped, since it is not the latest value, according to happens-before order. For non-

DRF programs, there is no guarantee that incorrectly synchronized writes will be seen

by some read, so if 𝑤 is not ordered with 𝑊 (𝑟) through happens-before order, dropping
the dirty data is acceptable since the value seen by 𝑟 is the result of a data race. As a

41

Chapter 3. The Memory Model F. Zakkak

result, we can unconditionally fetch variables when needed and overwrite any cached

data. Finally in case 3, volatile variables are only written through volatile writes, which

immediately write-back the corresponding variable (see condition WF-17). As a result,

a volatile variable cannot be observed as dirty by any action.

3.3.3. No Local Caching Optimization

In Section 3.3.2, we assume that all accesses to heap-based locations go through the

cache. However, caching data for the local heap-slice increases the memory traffic of

the system and slows down the application. We argue that JMM implementers can

avoid data caching for data that reside in a core’s local heap-slice. For writes, it is

straightforward to show that not using a cache will have the same behavior. Assume

a write-through and blocking cache, under this configuration, writes are immediately

written to the local heap-slice as they would do if they were not cached. Regarding

reads, not caching data from the local-heap slice is identical to fetching the data before

every read. This behavior is similar to having a tiny cache that results in the invalidation

of the cached data at every fetch. As a result, not caching data from the local heap-slice

does not impact JMM’s properties and JVM implementers could follow this approach

when more efficient.

It is important to note that the above reasoning is valid even if we choose not to cache

data residing in a remote heap-slice. This enables the JVM implementer to have a

hybrid system where some cores use data caches while others do not. Such a hybrid

JVM could be utilized on heterogeneous architectures where some cores have access

to coherent hardware caches while others do not.

3.3.4. Context Switching and Cache Sharing

Context switching is the process where a thread stops running to allow another thread to

run on the same core. To the best of our knowledge, in all available systems caches are

shared between the different software threads of an application. As a result, we expect

JVM implementers to also allow their caches to be shared between Java threads of the

same application. That said, context switching can also affect an execution and the

writes seen by reads. A problem may arise by context switching when a thread stops

executing right after fetching a variable and continues its execution right after another

thread has invalidated this variable. In these cases an immediate read of this variable

may return an out-of-thin-air value for non cache coherent systems. In cache coherent

shared memory systems this issue is implicitly resolved by producing a cache miss and

fetching the variable. On the contrary, on non cache coherent systems this needs to be

explicitly resolved. To model this in JDMM we need a way to argue about the ordering

of actions acting on the same cache. To do this we introduce a new partial order over

42

F. Zakkak 3.3. The Distributed Model

cache and memory access actions and modify some of the introduced functions and

well formedness rules to use this new partial order instead of the program order.

Cache order: In order to argue about the ordering of cache and memory access ac-

tions —actions of kind F , B , Iv , R, W , Vw , Vr , or In— acting on the same cache we

introduce the partial order ≤𝑑
𝑐𝑜. The cache order ≤𝑑

𝑐𝑜 defines a total order over all cache

and memory access actions acting on a single cache. We use 𝑥 ≤𝑑
𝑐𝑜 𝑦 to show that 𝑥

and 𝑦 act on the same cache, and that 𝑥 comes before 𝑦 according to the cache order.

Note that in implementations with private per thread caches the cache order is equal to

the program order.

Functions: Additionally, we modify the cache-action-seen, action-written-back, and

action-invalidated functions to use the cache order instead of the program order. We

modify these functions as follows:

• The cache-action-seen functionCs(𝑟), which for each read 𝑟 gives the fetch or write
action, that cached 𝑟.𝑣, seen by 𝑟. Cs(𝑟) ≤𝑑

𝑐𝑜 𝑟, Cs(𝑟).𝑣 = 𝑟.𝑣, andCs(𝑟).𝑘 ∈ {𝑊 , 𝐹 }.

• The action-written-back function Ab(𝑏), which for each write-back 𝑏 gives the ini-

tialization write, write, or volatile write action that 𝑏 writes back. Ab(𝑏) ≤𝑑
𝑐𝑜 𝑏,

Ab(𝑏).𝑣 = 𝑏.𝑣, and Ab(𝑏).𝑘 ∈ {In , 𝑊 ,Vw}.

• The action-invalidated function Ai (𝑝), which for each invalidation 𝑝 gives the write
or fetch action that cached the data that 𝑝 invalidates. Ai (𝑝) ≤𝑑

𝑐𝑜 𝑝, Ai (𝑝).𝑣 = 𝑝.𝑣,
and Ai (𝑝).𝑘 ∈ {𝑊 , 𝐹 }.

Well Formedness Conditions: Finally we change the following well formedness rules

to use the cache order instead of the program order.

WF-10: Every read is preceded, according to cache order, by a write or fetch action,

acting on the same variable as the read. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ ∃𝑥 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
𝑐𝑜 𝑟 ∧ 𝑥.𝑣 = 𝑟.𝑣 ∧ 𝑥.𝑘 ∈ {W ,F}

This change enables different threads to fetch data that another threadmay access

from the shared, among them, cache.

WF-11: There is no invalidation, update, or overwrite of a variable’s cached value be-

tween, according to cache order, the action that cached it and the read that sees

it. Formally:

∀𝑟, 𝑥 ∈ 𝐴𝐷 ∶ (𝑥 = Cs(𝑟))
⇒ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑘 ∈ {Iv , 𝐹 , 𝑊 }) ∧ (𝑥.𝑣 = 𝑦.𝑣) ∧ (𝑥 ≤𝑑

𝑐𝑜 𝑦 ≤𝑑
𝑐𝑜 𝑟)

43

Chapter 3. The Memory Model F. Zakkak

This change ensures that all threads see the latest, according to the cached order,

state of a cached value. Additionally it forbids (by making them not well formed)

executions where a thread stops executing right after fetching a variable and con-

tinues its execution right after another thread has invalidated this variable, like the

one discussed earlier.

WF-13: Write-back actions are preceded, according to cache order, by at least one

write to the corresponding variable. Formally:

∀𝑏 ∈ 𝐴𝐷 ∶ ∃𝑤 ∈ 𝐴𝐷 ∶ (𝑏.𝑣 = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑐𝑜 𝑏)

This change enables different threads to write-back writes performed by another

thread sharing the same cache.

WF-14: There are no other writes to the same variable between a write and its write-

back, according to cache order. Formally:

∀𝑏, 𝑤 ∈ 𝐴𝐷 ∶ (𝑤 = Ab(𝑏)) ⇒ ∄𝑤′ ∈ 𝐴𝐷 ∶ ((𝑤′.𝑣. = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑐𝑜 𝑤′ ≤𝑑

𝑐𝑜 𝑏))

This change ensures that all threads write-back the latest, according to the cached

order, cached value.

WF-16: Reads that see writes acting on a different cache are preceded, according to

cache order, by a fetch action that fetches the data of the corresponding write,

which were written back, and there is no other write-back of the corresponding

variable happening between the write-back and the fetch, according to synchro-

nization order. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ ¬ (W (𝑟) ≤𝑑
𝑐𝑜 𝑟)

⇒ ∃𝑏, 𝑓 ∈ 𝐴𝐷 ∶ (Ab(𝑏) = W (𝑟) ∧ Bf (𝑓) = 𝑏 ∧ 𝑓 ≤𝑑
𝑐𝑜 𝑟

∧ (∄𝑏′ ∶ 𝑏′.𝑣 = 𝑏.𝑣 ∧ 𝑏 ≤𝑑
𝑠𝑜 𝑏′ ≤𝑑

𝑠𝑜 𝑓))

With the above modifications a context switch can cause a thread to see the data of

another thread, but is this allowed under JDMM? JMM allows threads to see writes

performed by other threads even when they are not ordered by happens-before. The

only case where this can cause a problem, is when a thread 𝑡′ changes the write that a

different thread 𝑡 would otherwise observe. There are three ways to cause this:

a) Thread 𝑡′ writes the variable in question (e.g., 𝑣), and thread 𝑡 sees this write.

b) Thread 𝑡′ invalidates a variable 𝑣 and thread 𝑡 fetches it from the main memory,

where its value is different from the old cached value.

c) Thread 𝑡′ fetches a variable 𝑣 from the main memory, where again its value is

different from the old cached value, and thread 𝑡 sees this new value.

44

F. Zakkak 3.3. The Distributed Model

Note that all three scenarios are only possible under non-DRF programs. In the first

scenario, thread 𝑡 sees the value written by thread 𝑡′. The corresponding write in thread

𝑡′ and read in thread 𝑡 are conflicting accesses. If the data-race does not occur, then

thread 𝑡′ happens-before thread 𝑡 and thread 𝑡 sees thread’s 𝑡′ write anyway (assuming

there are no other threads running). The second and third scenarios, produce the same

behavior, they both update the cached value. If thread 𝑡 sees a different value from the

one it would see if there was no context switch, then there is a write 𝑤 that does not

happen-before the read 𝑟 performed by thread 𝑡. This implies a data race between 𝑤
and 𝑟. Under non-DRF programs the only guarantee that should hold, is the out-of-thin-

air guarantee. Since, under well formed executions, initialization actions happen-before

the first action of any thread context switching cannot result in out-of-thin-air values.

As a result, our model allows context switching without violating JMM. Context switching

enables multiple threads to share the same core and the same cache. As a result,

a cache can be shared by multiple cores having the same access time to it. This way,

memory can be better utilized, by reducing the number of variable replicas across the

system.

3.3.5. Thread Migration

Thread migration can also affect an execution and the writes seen by reads. Thread

migration occurs when a thread 𝑡 is moved to a different core, than the one it is currently

running, to continue its execution. At thread migration, there are three scenarios that

can cause a thread 𝑡 to observe a different value than the one it would observe if it would
not migrate, these are:

a) Thread 𝑡 accesses a dirty cached variable at its new cache.

b) Thread 𝑡 tries to access a variable that it had previously cached in its old cache,

but does not find the variable cached and fetches it from the main memory, with a

different value from the one cached at its old cache

c) Thread 𝑡 accesses a variable that is already cached to its new cache, but with a

different value than the one cached at its old cache.

In the first scenario, thread 𝑡 sees the value written by another thread 𝑡′. This is exactly

the same scenario with scenario a) discussed for context switching in Section 3.3.4. The

second scenario again produces the same behavior with scenarios b) and c) discussed

for context switching. The third scenario, however, is different. In the case of thread

migration, thread 𝑡 can see an older value than the one cached at its old cache. This

may result in executions inconsistent to the happens-before order and is possible under

both DRF and non-DRF programs. As a result, to preserve the happens-before order,

migrating threads need to re-fetch all variables before accessing them for the first time

after the migration. To express this formally we introduce a new (synthetic) action kind

45

Chapter 3. The Memory Model F. Zakkak

that denotes the migration of a thread. We use the abbreviation 𝑀 for such actions

and 𝑀.𝑣 is the migrating thread. To allow migration under JDMM while preserving its

adherence to JMM we introduce two new well-formedness conditions.

WFE-1: There is a corresponding fetch or write action between thread migration and

every read action. Formally:

∀𝑚, 𝑟 ∈ 𝐴𝐷 ∶ ((𝑚.𝑘 = M) ∧ (𝑚 ≤𝑑
𝑝𝑜 𝑟)) ⇒ ∃𝑥 ∈ 𝐴𝐷 ∶ ((𝑥 = Cs(𝑟)) ∧ (𝑚 ≤𝑑

𝑐𝑜 𝑥 ≤𝑑
𝑐𝑜 𝑟))

WFE-2: Additionally, to ensure that the fetched value is the latest according to the

happens-before order, any dirty data on the old cache need to be written back.

Formally:

∀𝑚, 𝑤 ∈ 𝐴 ∶ ((𝑚.𝑘 = M) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑚)) ⇒ ∃𝑏 ∈ 𝐴 ∶ ((𝑤 = Ab(𝑏)) ∧ (𝑤 ≤𝑑

𝑐𝑜 𝑏 ≤𝑑
𝑐𝑜 𝑚))

3.3.6. Garbage Collection

The use of caches introduces some extra overhead to copying garbage collectors. JMM

requires that the relocation of a variable or its reuse is not observable by the semantics.

To achieve this, any relocated and garbage collected addresses must be invalidated. If

a cache does not invalidate these objects, reads might see out-of-thin-air values. The

example in Table 3.6 demonstrates such a case.

Table 3.6.: Garbage Collection Example

Class Definition Thread 1 Thread 2

1 class A {

2 public int v;

3 A(int i) { v = i; }

4 }

// ...

A a = new A(1);

a = null;

A b = new A(4);

// ...

int e = a.v;

int f = b.v;

e == f == 1 is unacceptable

To simplify our reasoning we assume that the compiler does not optimize the code. The

possible values of a and b are a valid memory address or null. As a result, one would

expect this program to throw a NullPointerException or have one of the following

states at the end of the run (e == 1, f == 4), (e == 1, f == 0) and (e == 0,

f == 0). The zero values can be observed if the constructor’s store does not commit

before the corresponding access from T2. Note that this is acceptable since this is not

a DRF program and according to JMM there is no ordering between the construction of

an object and its accesses. However, e == f == 1 is not acceptable. f can only take

46

F. Zakkak 3.3. The Distributed Model

values zero and four. Zero is the default value of b.v while four is the value that b.v

gets from the constructor. That said, any other value (i.e., one) is out-of-thin-air.

If a garbage collection happens after executing Thread’s 1 line 3 (e.g., by a reference

counting garbage collector), the memory address previously referenced by variable a

can be garbage collected and reused in Thread’s 1 line 4. If this address is cached in

Thread’s 2 cache, whichmeans that e = a.v in Thread 2 happened before the garbage

collection and the cache is not invalidated, then the execution of f = b.v will hit the

cache and read a bogus value, leftover from a. As a result, f is assigned the value one.

3.3.7. Final Fields

As in JMM, we chose to omit final fields from the core model and discuss them sepa-

rately in this section. Intuitively, in Java a final field may only be written once by the

constructor of the object it belongs to, with the exception of some cases, like objects

implementing the java.io.Serializable interface, where an object’s final fields

need to be updated after construction. Similarly, static final fields may only be written

by the corresponding class’s initializer. JMM also handles specially some of the static

final fields. Namely those are java.lang.System.in, java.lang.System.out,

java.lang.System.err. These fields, although static and final, may be altered

through the functions java.lang.System.setIn, java.lang.System.setOut,

java.lang.System.setErr, thus JMM does not treat them the same as other static

final fields allowing them to be altered after construction.

Manson [70, §7] introduces a freeze action to define the semantics of final fields. Freeze

is used to mark a final field as frozen, meaning it may not be written any more. Each final

field gets frozen at the end of the constructor in which it is set (even if the constructor exits

abnormally). Note that in some cases, e.g., deserialization, multiple freezes are allowed

per final field. This way serializable objects may freeze their final fields at construction

and later at deserialization. Note, however, that this is not a generic rule and only applies

to special cases like deserialization. In this work we use Fr to denote the kind of freeze
actions.

JMM guarantees that threads that only read references to an object that were written

after the last freeze of its fields will always see the frozen values of the final fields.

Manson calls such references correctly published, because they are only published after

the object is initialized. Note that since final fields may be references as well, there may

be objects that are reachable through them. In such cases JMM guarantees that reads

of those objects will see values at least as up to date as they were when the freeze of

the final field was performed.

In the case where a thread reads a reference to an object that was written before the

last freeze of its fields, JMM requires that the above guarantees are enforced through

47

Chapter 3. The Memory Model F. Zakkak

the happens-before order. That is, it requires that any reads to the object’s final fields

come after, according to happens-before, the freeze actions of that final fields.

In the process of formalizing the above semantics Manson extends executions by in-

troducing two additional partial orders of actions, dereference chain (≤𝑑𝑐) and memory

chain (≤𝑚𝑐). The dereference chain order is used to show the order between an object’s

field or element access 𝑥 and the read 𝑟 that sees the address of that object (𝑟 ≤𝑑𝑐 𝑥).
Note that the ≤𝑑𝑐 order is reflexive, thus 𝑟 can be the same as 𝑥. According to JMM, for

every action 𝑥 that accesses a field, or element in the case of arrays, of an object 𝑜 that
was not constructed by 𝑥.𝑡 there exists a read 𝑟, where 𝑟.𝑡 = 𝑥.𝑡, that sees the address

of 𝑜 such that 𝑟 ≤𝑑𝑐 𝑥. The memory chain is a bit more complex. According to JMM:

• ∀𝑟 ∈ 𝐴 ∶ 𝑊 (𝑟) ≤𝑚𝑐 𝑟,

• ∀𝑟, 𝑥 ∈ 𝐴 ∶ 𝑟 ≤𝑑𝑐 𝑥 ⇒ 𝑟 ≤𝑚𝑐 𝑥,

• For every action 𝑤 that is a write of the address of an object 𝑜 that was not con-

structed by 𝑤.𝑡 there exists a read 𝑟, where 𝑟.𝑡 = 𝑤.𝑡 such that 𝑟 ≤𝑚𝑐 𝑤. 1

Having defined these two additional partial orders, Manson extends JMM to define which

writes can be seen by reads of final fields. The happens-before order is used as previous

except for the cases where a read acts on a final field and either the write of that field

is performed by a different thread or it is the result of a special mechanism such as

deserialization. In such cases,

∀𝑤, 𝑥, 𝑦, 𝑟, 𝑟′ ∈ 𝐴 ∶ ((𝑥.𝑘 = Fr) ∧ (𝑥.𝑣 = 𝑟.𝑣) ∧ 𝑤 ≤ℎ𝑏 𝑥 ≤ℎ𝑏 𝑦 ≤𝑚𝑐 𝑟 ≤𝑑𝑐 𝑟′) ⇒ 𝑤 ≤ℎ𝑏 𝑟′

where 𝑦 is not a read of a final field and 𝑤 ≤ℎ𝑏 𝑟′ is not transitively closed with other ≤ℎ𝑏
orderings. As in the core model a read 𝑟 can see a write 𝑤 if 𝑤 ≤ℎ𝑏 𝑟 and ∄𝑤′ ∈ 𝐴 ∶
𝑤 ≤ℎ𝑏 𝑤′ ≤ℎ𝑏 𝑟.

Since the extensions of JMM for final fields builds on the happens before order it is also

applicable on JDMM without the need of any alternations.

3.3.8. Direct Transfers Across Local Memories

In some architectures it is possible to directly transfer data from one local slice to an-

other, essentially avoiding the transfer to and from the main memory in some cases.

In our abstract machine memory model (Section 3.3.1) we omit such communication

channels however. This allows us to keep JDMM simple and make clear when the JVM

should perform write-backs to and fetches from the main memory, which we consider

to be the most common case when designing a software cache based JVM. We ac-

knowledge, however, that in some cases a JVM could exploit the direct memory access

1JMM defines one more case regarding final field safe contexts. In this work, we do not include this case

as well as a discussion of final field safe context, since this mechanism is optional and implementation

specific.

48

F. Zakkak 3.4. On JDMM’s adherence to JMM

support to optimize performance and energy efficiency. To argue about the correctness

of executions with such optimizations, where a variable may be directly fetched from

another software cache instead of the main memory, it suffices to consider these direct

transfers as a combination of a write-back action and a fetch action, to and from an arti-

ficial main memory. This is essentially equivalent to considering the write-back a no-op

and allowing fetch actions to fetch data from a different place than the main memory.

Note that, although this would be sufficient to allow such optimizations under JDMM,

JDMM is stricter than necessary sinceWF-13 only allows write-backs that are preceded

by at least one write to the corresponding variable. That said, JDMM does not allow the

propagation of a cached variable from caches of threads that do not write the variable,

limiting the optimization window.

3.4. On JDMM's adherence to JMM

In this section we argue that JDMM adheres to JMM, while allowing a more detailed

modeling of non cache coherent or distributed memory implementations. The argument

consists of a construction of a shared memory well-formed execution from a given dis-

tributed memory well-formed execution.

We show that given a distributed well-formed execution trace, 𝐸𝐷, we can transform it

to a shared-memory well formed execution 𝐸.

We use J𝐸𝐷K = 𝐸 to show that 𝐸 is constructed from 𝐸𝐷. Then we show that:

∀𝐸𝐷 ∶ WF𝐷(𝐸𝐷) ⇒ WF (J𝐸𝐷K)

Assuming a JDMM execution:

𝐸𝐷 = ⟨𝑃 , 𝐴𝐷, ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜,W (),V (),Cs(),Bf (),Ab(),Ai (), ≤𝑑
𝑠𝑤, ≤𝑑

ℎ𝑏⟩

such that WF𝐷(𝐸𝐷), the construction J𝐸𝐷K results in a new JMM execution:

J𝐸𝐷K = ⟨𝑃 , 𝐴, ≤𝑝𝑜, ≤𝑠𝑜,W (),V (), ≤𝑠𝑤, ≤ℎ𝑏⟩

where 𝐴 is the set of actions in 𝐴𝐷 excluding all actions 𝑥 with kind F , B , Iv , or 𝑀:

𝐴 = {𝑥 ∈ 𝐴𝐷 ∶ 𝑥.𝑘 ∉ {F ,B , Iv ,M }}

In the same fashion, the relations ≤𝑝𝑜, ≤𝑠𝑜, ≤𝑠𝑤 and ≤ℎ𝑏 are the projections of ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜,

≤𝑑
𝑠𝑤 and ≤𝑑

ℎ𝑏, respectively, that only refer to actions in 𝐴.

≤𝑝𝑜 =≤𝑑
𝑝𝑜 |𝐴

≤𝑠𝑜 =≤𝑑
𝑠𝑜 |𝐴

≤𝑠𝑤 =≤𝑑
𝑠𝑤 |𝐴

≤ℎ𝑏 =≤𝑑
ℎ𝑏 |𝐴

49

Chapter 3. The Memory Model F. Zakkak

To show that J𝐸𝐷K is well-formed it suffices to show that the well-formedness conditions

WF-1 – WF-9 as defined in Section 3.2 are satisfied by it. From assumption WF𝐷(𝐸𝐷)
we have that conditions WF-1 –WF-9 hold for 𝐴𝐷, ≤𝑑

𝑝𝑜, ≤𝑑
𝑠𝑜, W (), V (), ≤𝑑

𝑠𝑤 and ≤𝑑
ℎ𝑏. As

none of these conditions refers to actions with kinds F , B , Iv , M , and relations ≤𝑑
𝑝𝑜,

≤𝑑
𝑠𝑜, ≤𝑑

𝑠𝑤, ≤𝑑
ℎ𝑏 are supersets of ≤𝑝𝑜, ≤𝑠𝑜, ≤𝑠𝑤, ≤ℎ𝑏, respectively, then none of the actions

removed from 𝐴𝐷 to 𝐴 cause any of the conditionsWF-1 –WF-9 to break.

3.5. On JDMM's expressiveness over JMM

In this section we argue that JDMM is as expressive as JMM, while allowing a more

detailed modeling of non cache coherent or distributed memory implementations. The

argument consists of a construction of a distributed memory well-formed execution from

a given shared memory well-formed execution.

We show that given a shared-memory well-formed execution trace, 𝐸, we can transform
it to a distributed well formed execution 𝐸𝐷.

We use J𝐸K′ = 𝐸𝐷 to show that 𝐸𝐷 is constructed from 𝐸. Then we show that:

∀𝐸 ∶ WF (𝐸) ⇒ WF𝐷(J𝐸K′)

Assuming a JMM execution:

𝐸 = ⟨𝑃 , 𝐴, ≤𝑝𝑜, ≤𝑠𝑜,W (),V (), ≤𝑠𝑤, ≤ℎ𝑏⟩

such that WF (𝐸), the construction J𝐸K′ results in a new JDMM execution:

J𝐸K′ = ⟨𝑃 , 𝐴𝐷, ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜,W (),V (),Cs(),Bf (),Ab(),Ai (), ≤𝑑
𝑠𝑤, ≤𝑑

ℎ𝑏⟩

where:

𝐴𝐷 is the set of actions in 𝐴 enriched with one write-back action per write action, and

one fetch, one invalidate and another fetch action per read action.

≤𝑑
𝑝𝑜 is a superset of ≤𝑝𝑜, ≤𝑑

𝑝𝑜⊇≤𝑝𝑜, enriched with edges between the actions in 𝐴 and

the additional actions in 𝐴𝐷. Formally:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑝𝑜 𝑦 ⇒ 𝑥 ≤𝑑
𝑝𝑜 𝑦 (3.1)

∀𝑤, 𝑦 ∈ 𝐴𝐷 ∶ 𝑤 ≤𝑝𝑜 𝑦 ⇒ (∃𝑏 ∈ 𝐴𝐷 ∶ (𝑤.𝑣 = 𝑏.𝑣) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑏 ≤𝑑

𝑝𝑜 𝑦)) (3.2)

∀𝑥, 𝑟 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑝𝑜 𝑟 ⇒ (∃𝑓, 𝑝, 𝑓 ′ ∈ 𝐴𝐷 ∶ (𝑟.𝑣 = 𝑓.𝑣 = 𝑝.𝑣 = 𝑓.𝑣)
∧ (𝑥 ≤𝑑

𝑝𝑜 𝑓 ≤𝑑
𝑝𝑜 𝑝 ≤𝑑

𝑝𝑜 𝑓 ′ ≤𝑑
𝑝𝑜 𝑟)) (3.3)

∀𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
𝑝𝑜 𝑦 ≤𝑑

𝑝𝑜 𝑧 ⇒ 𝑥 ≤𝑑
𝑝𝑜 𝑧 (3.4)

50

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

≤𝑑
𝑠𝑜 is a superset of ≤𝑠𝑜, ≤𝑑

𝑠𝑜⊇≤𝑠𝑜, enriched with edges between the synchronization

actions in 𝐴 and the additional actions in 𝐴𝐷. Formally:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑠𝑜 𝑦 ⇒ 𝑥 ≤𝑑
𝑠𝑜 𝑦 (3.5)

∀𝑥 ∈ SA(𝐴) ∶ ∀𝑦 ∈ SA(𝐴𝐷) ∶ 𝑥 ≤𝑑
𝑝𝑜 𝑦 ⇒ 𝑥 ≤𝑑

𝑠𝑜 𝑦 (3.6)

∀𝑥 ∈ SA(𝐴) ∶ ∀𝑦 ∈ SA(𝐴𝐷) ∶ 𝑦 ≤𝑑
𝑝𝑜 𝑥 ⇒ 𝑦 ≤𝑑

𝑠𝑜 𝑥 (3.7)

∀𝑥, 𝑦 ∈ SA(𝐴) ∶ ∀𝑧 ∈ SA(𝐴𝐷 − 𝐴) ∶ (𝑥 ≤𝑠𝑜 𝑦) ∧ (𝑥 ≤𝑑
𝑠𝑜 𝑧) ⇒ (𝑥 ≤𝑑

𝑠𝑜 𝑧 ≤𝑑
𝑠𝑜 𝑦) (3.8)

∀𝑥, 𝑦 ∈ SA(𝐴𝐷) ∶ 𝑥 ≤𝑑
𝑝𝑜 𝑦 ⇒ 𝑥 ≤𝑑

𝑠𝑜 𝑦 (3.9)

∀𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
𝑠𝑜 𝑦 ≤𝑑

𝑠𝑜 𝑧 ⇒ 𝑥 ≤𝑑
𝑠𝑜 𝑧 (3.10)

Cs(𝑟) returns the last, according to program-order, write or fetch (whichever comes last)

that comes before 𝑟 and acts on the same variable.

Cs(𝑟) = 𝑥 ∶ (𝑥 ∈ 𝐴𝐷) ∧ (𝑥.𝑘 ∈ {𝑊 , 𝐹 }) ∧ (𝑥.𝑣 = 𝑟.𝑣) ∧ (𝑥 ≤𝑑
𝑝𝑜 𝑟)

∧ (∃𝑥′ ∈ 𝐴𝐷 ∶ (𝑥′.𝑘 ∈ {𝑊 , 𝐹 }) ∧ (𝑥′.𝑣 = 𝑟.𝑣) ∧ (𝑥 ≤𝑑
𝑝𝑜 𝑥′ ≤𝑑

𝑝𝑜 𝑟)) (3.11)

Bf (𝑓) returns the last, according to synchronization-order, write-back that comes before

𝑓 and acts on the same variable.

Bf (𝑓) = 𝑏 ∶ (𝑏 ∈ 𝐴𝐷) ∧ (𝑏.𝑣 = 𝑓.𝑣) ∧ (𝑏 ≤𝑑
𝑠𝑜 𝑓)

∧ (∃𝑏′ ∈ 𝐴𝐷 ∶ (𝑏′.𝑣 = 𝑓 .𝑣) ∧ (𝑏 ≤𝑑
𝑠𝑜 𝑏′ ≤𝑑

𝑠𝑜 𝑓)) (3.12)

Ab(𝑏) returns the last, according to program-order, write that comes before 𝑏 and acts

on the same variable.

Ab(𝑏) = 𝑤 ∶ (𝑤 ∈ 𝐴𝐷) ∧ (𝑤.𝑣 = 𝑏.𝑣) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑏)

∧ (∃𝑤′ ∈ 𝐴𝐷 ∶ (𝑤′.𝑣 = 𝑏.𝑣) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑤′ ≤𝑑

𝑝𝑜 𝑏)) (3.13)

Ai (𝑝) returns the last, according to program-order, write or fetch that comes before 𝑝
and acts on the same variable.

Ai (𝑝) = 𝑥 ∶ (𝑥 ∈ 𝐴𝐷) ∧ (𝑥.𝑘 ∈ {𝑊 , 𝐹 }) ∧ (𝑥.𝑣 = 𝑝.𝑣) ∧ (𝑥 ≤𝑑
𝑝𝑜 𝑝)

∧ (∃𝑥′ ∈ 𝐴𝐷 ∶ (𝑥′.𝑘 ∈ {𝑊 , 𝐹 }) ∧ (𝑥′.𝑣 = 𝑝.𝑣) ∧ (𝑥 ≤𝑑
𝑝𝑜 𝑥′ ≤𝑑

𝑝𝑜 𝑝)) (3.14)

51

Chapter 3. The Memory Model F. Zakkak

≤𝑑
𝑠𝑤 is equivalent to ≤𝑠𝑤. Formally:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑠𝑤 𝑦 ⇒ 𝑥 ≤𝑑
𝑠𝑤 𝑦 (3.15)

≤𝑑
ℎ𝑏 is a superset of ≤ℎ𝑏, ≤𝑑

ℎ𝑏⊇≤ℎ𝑏, enriched with edges between the actions in 𝐴 and

the additional actions in 𝐴𝐷. Formally:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ 𝑥 ≤ℎ𝑏 𝑦 ⇒ 𝑥 ≤𝑑
ℎ𝑏 𝑦 (3.16)

∀𝑥, 𝑦 ∈ 𝐴 ∶ ∀𝑧 ∈ 𝐴𝐷 ∶ (𝑥 ≤ℎ𝑏 𝑦 ∧ 𝑦 ≤𝑑
𝑝𝑜 𝑧) ⇒ 𝑥 ≤𝑑

ℎ𝑏 𝑧 (3.17)

∀𝑥, 𝑦 ∈ 𝐴 ∶ ∀𝑧 ∈ 𝐴𝐷 ∶ (𝑥 ≤ℎ𝑏 𝑦 ∧ 𝑧 ≤𝑑
𝑝𝑜 𝑥) ⇒ 𝑧 ≤𝑑

ℎ𝑏 𝑦 (3.18)

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
𝑝𝑜 𝑦 ⇒ 𝑥 ≤𝑑

ℎ𝑏 𝑦 (3.19)

∀𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
ℎ𝑏 𝑦 ≤𝑑

ℎ𝑏 𝑧 ⇒ 𝑥 ≤𝑑
ℎ𝑏 𝑧 (3.20)

To show that J𝐸K′ is well-formed it suffices to show that the well-formedness conditions

WF-1 –WF-19 as defined in Section 3.3.2 are satisfied by it. From assumption WF (𝐸)
we have that conditionsWF-1 –WF-9 hold for 𝐴, ≤𝑝𝑜, ≤𝑠𝑜, 𝑊, 𝑉, ≤𝑠𝑤 and ≤ℎ𝑏.

WF-1, WF-2, and WF-5: hold for 𝐴𝐷, ≤𝑑
𝑝𝑜, ≤𝑑

𝑠𝑜, ≤𝑑
𝑠𝑤 and ≤𝑑

ℎ𝑏. since they do not depend

on any of the ≤𝑝𝑜, ≤𝑠𝑜, ≤𝑠𝑤 and ≤ℎ𝑏.

WF-3: J𝐸K′ extends ≤𝑠𝑜 by introducing relations between the synchronization actions 𝐴
and the new actions in 𝐴𝐷 −𝐴. Since the new relations are added in a manner that does

not create circles and the number of new actions is finite, the number of synchronization

actions preceding another synchronization action 𝑦 is finite in J𝐸K′ as well.

WF-4: J𝐸K′ extends ≤𝑝𝑜 and ≤𝑠𝑜 by introducing relations between the synchronization

actions 𝐴 and the new actions in 𝐴𝐷 −𝐴. ≤𝑝𝑜 is extended by including relations between

the writes and the introduced write-backs, as well as between the introduced fetches and

invalidates, and the reads. ≤𝑠𝑜 is extended by including all the ≤𝑑
𝑝𝑜 relations between

synchronization actions and orders the new actions 𝐴𝐷 − 𝐴 by placing them between

the synchronization actions of 𝐴 by respecting ≤𝑑
𝑝𝑜. As a result, synchronization order

is consistent with program order.

WF-6: J𝐸K′ extends ≤𝑝𝑜 by including relations between the writes and the introduced

write-backs, as well as between the introduced fetches and invalidates, and the reads.

The program-order is not altered in any other way and the reads and writes do not get

re-ordered. As a result, the execution obeys intra-thread consistency.

52

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

WF-7: By WF-4, ≤𝑑
𝑠𝑜 is consistent with ≤𝑑

𝑝𝑜 and no reads or writes get re-ordered, that

is no volatile reads or writes are re-ordered as well. As a result, the execution obeys

synchronization-order consistency.

WF-8:J𝐸K′ extends ≤𝑝𝑜 by including relations between the writes and the introduced

write-backs, as well as between the introduced fetches and invalidates, and the reads.

≤𝑑
𝑠𝑤 is equal to ≤𝑠𝑤, the ≤𝑑

ℎ𝑏 is the same as ≤ℎ𝑏 extended with relations between the new

actions 𝐴𝐷 − 𝐴 that are consistent with ≤𝑑
𝑝𝑜 and no reads or writes get re-ordered. As a

result, the execution obeys happens-before consistency.

WF-9: ≤𝑑
ℎ𝑏 is the same as ≤ℎ𝑏 extended with relations between the new actions 𝐴𝐷 − 𝐴

that are consistent with ≤𝑑
𝑝𝑜 and no reads or writes get re-ordered. As a result, every

thread’s start action happens-before its other actions except for initialization actions as

it did in 𝐸.

WF-10: According to ≤𝑑
𝑝𝑜 (Equation (3.3)) there exists a fetch action right before each

read action, according to program-order. As a result, every read is preceded, according

to program order, by a write or fetch action, acting on the same variable as the read.

WF-11: According to Cs() (Equation (3.11)) there is no other write (overwrite) or fetch

(update) action between 𝐶𝑠(𝑟) and 𝑟. Additionally, according to ≤𝑑
𝑝𝑜 (Equation (3.3)),

invalidations appear between two fetches. As a result, there is no invalidation, update,

or overwrite of a variable’s cached value between, according to program order, the action

that cached it and the read that sees it.

WF-12: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action 𝑏 right after

each write action (including initialization actions). According toWF-9 every thread’s start

action happens-before its other actions except for initialization actions, (𝑖 ≤𝑑
ℎ𝑏 𝑠 ≤𝑑

𝑝𝑜 𝑥),
where 𝑠 is the thread start action and 𝑥 is any other action except for initialization. As a

result there is at least a write (initialization) and a write-back, of a variable, that happen-

before each read of that variable. Additionally, according to ≤𝑑
𝑝𝑜 (Equation (3.3)) there

exists a fetch action right before each read action. Since happens-before is the transitive

closure of ≤𝑑
𝑠𝑤 and ≤𝑑

𝑝𝑜, ∃𝑥, 𝑦 ∈ SA(𝐴𝐷) ∶ 𝑏 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑠𝑤 𝑦 ≤𝑑
𝑝𝑜 𝑓 ∧ 𝑏 ≤𝑑

𝑠𝑜 𝑓. As a result, fetch
actions are preceded, according to synchronization order, by at least one write-back of

the corresponding variable.

WF-13: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action right after each

write action. As a result, Write-back actions are preceded, according to program order,

by at least one write to the corresponding variable.

WF-14: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action right after each

write action. As a result, there are no other writes to the same variable between a write

and its write-back, according to program order.

WF-15: According to ≤𝑑
𝑝𝑜 (Equation (3.3)) there exists a fetch action right before each

invalidation action. As a result, only cached variables are invalidated.

53

Chapter 3. The Memory Model F. Zakkak

WF-16: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action right after each

write action, and a fetch action right before each read. Additionally, according to Bf (𝑓)
a 𝑓 fetches the last, according to synchronization order, write-back that comes before

𝑓 and acts on the same variable. As a result reads that see writes performed by other

threads are preceded, according to program order, by a fetch action that fetches the data

of the corresponding write, which were written back, and there is no other write-back of

the corresponding variable happening between the write-back and the fetch, according

to synchronization order.

WF-17: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action 𝑏 right after

each write action (including volatile writes). As a result, volatile writes are immediately

written back, in the sense that no other action happens between the volatile write and

its write-back, according to the program order.

WF-18: According to ≤𝑑
𝑝𝑜 (Equation (3.3)) there exists a fetch action right before each

read action (including volatile reads). As a result, a fetch of the corresponding variable

happens immediately before each volatile read, in the sense that no other action hap-

pens between the corresponding fetch and the volatile read, according to the program

order.

WF-19: According to ≤𝑑
𝑝𝑜 (Equation (3.2)) there exists a write-back action 𝑏 right after

each write action (including initialization actions). As a result, initialization writes are

immediately written back.

Note that the construction J𝐸K′, described above, is not the only possible one. For

instance JDMM allows multiple writes without the need to write-back each one of them

when there is no release action between them, according to program-order. However,

our construction J𝐸K′ places a write-back after every write, producing just one of many

possible well-formed executions.

Furthermore, we examine whether JDMM satisfies the causality test cases [83] intro-

duced by Manson et al. and whether it allows the same reorderings as JMM.

3.5.1. Causality Tests

The causality test cases [83] presented by Manson et al. mainly refer to compiler op-

timizations, thus they are satisfied by JDMM. However, for completeness we examine

the cases one by one in tables 3.7–3.26. In each table we first show the test case,

starting with the initial memory state and code segment on each thread, and ending

with the behavior in question. For allowed behavior, we present the possible executions

that could result in the behavior in question. We also show for each case whether it is

allowed or not, both under JMM and JDMM. For each allowed test case we shortly dis-

cuss the execution producing the behavior in question both under JMM and JDMM. To

present the execution we interleave the instructions executed by the different threads

in each example. We present the interleaved execution as a table where each thread

54

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

is assigned to a single column and each row is considered a different time step, with

the higher rows/steps appearing earlier in the execution time. In cases where the ex-

act order of some instructions is not important to the case at hand we might place in the

same row instructions of various threads, implying that these instructions need not be

interleaved. For non allowed test cases we shortly discuss how the behavior in ques-

tion is forbidden both by JMM and JDMM. According to JMM test cases 4, 5, 10, 12-15

are forbidden, while test cases 1-3, 6-9, 11, 16-20 are allowed.

Causality Test Case 1

Table 3.7.: Causality Test Case 1

Initially x == y == 0

Thread 1 Thread 2

r1 = x

if r1 >= 0

y = 1

r2 = y

x = r2

Result r1 == r2 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

y = 1

r1 = x

if true ;

r2 = y

x = r2

In Test Case 1 (Table 3.7) an inter-thread analysis of the code could determine that

variables x and y cannot be negative, and move y = 1 early. Under JDMM, y = 1

may get written back by Thread 1, and y may get (re)fetched by Thread 2 before the

execution of r2 = y, resulting to r2 being assigned the value 1. Similarly, x = r2

may get written back by Thread 2, and x may get (re)fetched by Thread 1 before the

execution of r1 = x, resulting in r1 being assigned the value 1. As a result, r1 ==

r2 == 1 is allowed under both JMM and JDMM.

Causality Test Case 2

In Test Case 2 (Table 3.8) the behavior in question is allowed, since in sequentially

consistent executions r1 and r2 are always equal and the compiler could determine

this and move y = 1 early in the execution. Under JDMM, y = 1may get written back

by Thread 1, and y may get (re)fetched by Thread 2 before the execution of r3 = y,

resulting to r3 being assigned the value 1. Similarly, x = r3 may get written back by

Thread 2, and x may get (re)fetched by Thread 1 before the execution of r1 = x and

r2 = x, resulting in r1 and r2 being assigned the value 1. As a result, r1 == r2 ==

r3 == 1 is allowed under both JMM and JDMM.

55

Chapter 3. The Memory Model F. Zakkak

Table 3.8.: Causality Test Case 2

Initially x == y == 0

Thread 1 Thread 2

r1 = x

r2 = x

if r1 == r2

y = 1

r3 = y

x = r3

Result r1 == r2 == r3 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

y = 1

r1 = x

r2 = x

if true ;

r3 = y

x = r3

Causality Test Case 3

Table 3.9.: Causality Test Case 3

Initially x == y == 0

Thread 1 Thread 2 Thread 3

r1 = x

r2 = x

if r1 == r2

y = 1

r3 = y

x = r3

x = 2

Result r1 == r2 == r3 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2 Thread 3

y = 1

r1 = x

r2 = r1

if true ;

r3 = y

x = r3

x = 2

In Test Case 3 (Table 3.9) the behavior in question is allowed, since redundant read

elimination could result in the compiler determining that r1 is always equal to r2 and

move y = 1 early in the execution. Note that in this case the execution of x = 2 by

Thread 3 nay happen anytime as long as it does not become visible to the other threads.

Under JDMM, y = 1 may get written back by Thread 1, and y may get (re)fetched

by Thread 2 before the execution of r3 = y, resulting in r3 being assigned the value

1. Similarly, x = r3 may get written back by Thread 2, and x may get (re)fetched by

Thread 1 before the execution of r1 = x, resulting in r1 and r2 being assigned the

value of 1. Note that since there are is no synchronization in this test, x = 2may never

be written back and thus be observed by Thread 1. As a result, r1 == r2 == r3 ==

1 is allowed under both JMM and JDMM.

56

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

Causality Test Case 4

Table 3.10.: Causality Test Case 4

Initially x == y == 0

Thread 1 Thread 2

r1 = x

y = r1

r2 = y

x = r2

Result r1 == r2 == 1 ?

JMM JDMM

Forbidden Forbidden

In Test Case 4 (Table 3.10) since 1 is never written to y nor to x, if observed then it

would be out-of-thin-air, thus this case is forbidden in JMM. Since JDMM respects the

no out-of-thin-air guarantee this case is forbidden in JDMM as well.

Causality Test Case 5

Table 3.11.: Causality Test Case 5

Initially x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x

y = r1

r2 = y

x = r2

z = 1 r3 = z

x = r3

Result r1 == r2 == 1 and r3 == 0 ?

JMM JDMM

Forbidden Forbidden

In Test Case 5 (Table 3.11), the value 1 only appears in Thread 3, where it gets assigned

to z. Since in the behavior in question r3 holds the value 0, Thread 4 may not observe

the write performed by Thread 3. However, z is not read by any other Thread in the

execution, thus 1 is never written to x nor to y. As a result, the only way to observe

r1 == r2 == 1 and r3 == 0 would be by r1 or r2 being assigned out-of-thin-air

values, thus this case is forbidden both in JMM and JDMM.

Causality Test Case 6

In Test Case 6 (Table 3.12) the behavior in question is allowed, since an intra-thread

analysis of the code could determine that A is always set to 1, and move B = 1 early

in the execution. Under JDMM, B = 1 may get written back by Thread 1, and B may

get (re)fetched by Thread 2 before the execution of r2 = B, resulting in r2 being as-

signed the value 1. Similarly, A = 1 may get written back by Thread 2, and A may get

(re)fetched by Thread 1 before the execution of r1 = A, resulting in r1 and r2 being

57

Chapter 3. The Memory Model F. Zakkak

Table 3.12.: Causality Test Case 6

Initially A == B == 0

Thread 1 Thread 2

r1 = A

if r1 == 1

B = 1

r2 = B

if r2 == 1

A = 1

if r2 == 0

A = 1

Result r1 == r2 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

B = 1

r1 = A

if true ;

r2 = B

if r2 == 1

A = 1

if r2 == 0

A = 1

assigned the value of 1. As a result, r1 == r2 == 1 is allowed under both JMM and

JDMM.

Causality Test Case 7

Table 3.13.: Causality Test Case 7

Initially x == y == z == 0

Thread 1 Thread 2

r1 = z

r2 = x

y = r2

r3 = y

z = r3

x = 1

Result r1 == r2 == r3 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

r2 = x

y = r2

r1 = z

x = 1

r3 = y

z = r3

In Test Case 7 (Table 3.13) the behavior in question is allowed, since an intra-thread

analysis of the code could determine that r1 = z could be moved after all other as-

signments of Thread 1, and that x = 1 could be moved before all other assignments of

Thread 2, since there are no dependencies between these assignments and the other

assignments of the corresponding threads. Under JDMM, x = 1 may get written back

by Thread 2, and xmay get (re)fetched by Thread 1 before the execution of r2 = x, re-

sulting in r2 being assigned the value 1. Then, y = r2may get written back by Thread

1, and y may get (re)fetched by Thread 2 before the execution of r3 = y. Similarly, z

58

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

= r3 may get written back by Thread 2, and z may get (re)fetched by Thread 1 before

the execution of r1 = z, resulting in r1, r2, and r3 being assigned the value of 1. As

a result, r1 == r2 == r3 == 1 is allowed under both JMM and JDMM.

Causality Test Case 8

Table 3.14.: Causality Test Case 8

Initially x == y == 0

Thread 1 Thread 2

r1 = x

r2 = 1+(r1*r1)-r1

y = r2

r3 = y

x = r3

Result r1 == r2 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

y = 1

r1 = x

r2 = 1

r3 = y

x = r3

In Test Case 8 (Table 3.14) the behavior in question is allowed, since an intra-thread

analysis of the code could determine that x and y can only be equal to 0 or 1, and

thus determine that r2 can only be equal to 1, allowing y = 1 to be moved early in

the execution. Under JDMM, y = 1 may get written back by Thread 1, and y may

get (re)fetched by Thread 2 before the execution of r3 = y, resulting in r3 being as-

signed the value 1. Similarly, x = r3may get written back by Thread 2, and xmay get

(re)fetched by Thread 1 before the execution of r1 = x, resulting in r1 and r2 being

assigned the value of 1. As a result, r1 == r2 == 1 is allowed under both JMM and

JDMM.

Causality Test Case 9

In Test Case 9 (Table 3.15) the behavior in question is allowed, since an intra-thread

analysis of the code could determine that Thread 3 is scheduled after Thread 2 (due to

some constraint not present here), meaning that the read of x by Thread 2 will never see

the write of Thread 3. Similarly to test case 8 (Table 3.14), the intra-thread analysis of the

code could then determine that r1 can only be equal to 0 or 1, and thus determine that r2

can only be equal to 1, allowing y = 1 to be moved early in Thread 1. Under JDMM,

as in test case 8, y = 1 may get written back by Thread 1, and y may get (re)fetched

by Thread 2 before the execution of r3 = y, resulting in r3 being assigned the value

1. Similarly, x = r3 may get written back by Thread 2, and x may get (re)fetched by

Thread 1 before the execution of r1 = x, resulting in r1 and r2 being assigned the

value of 1. As a result, r1 == r2 == 1 is allowed under both JMM and JDMM.

59

Chapter 3. The Memory Model F. Zakkak

Table 3.15.: Causality Test Case 9

Initially x == y == 0

Thread 1 Thread 2 Thread 3

r1 = x

r2 = 1+(r1*r1)-r1

y = r2

r3 = y

x = r3

x = 2

Result r1 == r2 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2 Thread 3

y = 1

r1 = x

r2 = 1

r3 = y

x = r3

x = 2

Causality Test Case 10

Table 3.16.: Causality Test Case 10

Initially x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x

if r1 == 1

y = 1

r2 = y

if r2 == 1

x = 1

z = 1 r3 = z

if r3 == 1

x = 1

Result r1 == r2 == 1 and r3 == 0 ?

JMM JDMM

Forbidden Forbidden

In Test Case 10 (Table 3.16), similarly to test case 5 (Table 3.11), since in the behavior in

question r3 holds the value 0, Thread 4 may not observe the write performed by Thread

3. However, z is not read by any other Thread in the execution, thus 1 is never written

to x nor to y. As a result, the only way to observe r1 == r2 == 1 and r3 == 0

would be by r1 or r2 being assigned out-of-thin-air, thus this case is forbidden both in

JMM and JDMM.

Causality Test Case 11

In Test Case 11 (Table 3.17), similarly to test case 7 (Table 3.13), the behavior in question

is allowed, since an intra-thread analysis of the code could determine that independent

assignments could be reordered. Under JDMM, x = 1may get written back by Thread

2, and x may get (re)fetched by Thread 1 before the execution of r2 = x, resulting

60

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

Table 3.17.: Causality Test Case 11

Initially x == y == z == 0

Thread 1 Thread 2

r1 = z

w = r1

r2 = x

y = r2

r4 = w

r3 = y

z = r3

x = 1

Result r1 == r2 == r3 == r4 == 1 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

r2 = x

y = r2

r1 = z

w = r1

x = 1

r3 = y

z = r3

r4 = w

in r2 being assigned the value 1. Then, y = r2 may get written back by Thread 1,

and y may get (re)fetched by Thread 2 before the execution of r3 = y, resulting in r3

being assigned the value 1. Later, z = r3 may get written back by Thread 2, and z

may get (re)fetched by Thread 1 before the execution of r1 = z, resulting in r1 being

assigned the value 1. Similarly, w = r1 may get written back by Thread 1, and w may

get (re)fetched by Thread 2 before the execution of r4 = w, resulting in r1, r2, r3,

and r4 being assigned the value 1. As a result, r1 == r2 == r3 == r4 == 1 is

allowed under both JMM and JDMM.

Causality Test Case 12

Table 3.18.: Causality Test Case 12

Initially x == y == 0, a[0] == 1, and a[1] == 2

Thread 1 Thread 2

r1 = x

a[r1] = 0

r2 = a[0]

y = r2

r3 = y

x = r3

Result r1 == r2 == r3 == 1 ?

JMM JDMM

Forbidden Forbidden

In Test Case 12 (Table 3.18), array a is only accessed by Thread 1, thus the code

for Thread 1 should be equivalent to the code in Figure 3.3. Similarly to test case 4

(Table 3.10), since in sequentially consistent executions r1 can never be assigned the

value 1, if observed then it would be out-of-thin-air, thus this case is forbidden in both

61

Chapter 3. The Memory Model F. Zakkak

r1 = x

a[r1] = 0

if r1 == 0

r2 = 0

else

r2 = 1

y = r2

Figure 3.3.: Test case 12 thread 1 equivalent code

JMM and JDMM.

Causality Test Case 13

Table 3.19.: Causality Test Case 13

Initially x == y == 0

Thread 1 Thread 2

r1 = x

if r1 == 1

y = 1

r2 = y

if r2 == 1

x = 1

Result r1 == r2 == 1 ?

JMM JDMM

Forbidden Forbidden

In Test Case 13 (Table 3.19), since there is no sequentially consistent execution where

x or y are written, the only sequentially consistent result is r1 == r2 == 0. Addition-

ally, since x and y are only read concurrently, the program is correctly synchronized,

meaning that non sequentially consistent executions are not acceptable both in JMM

and JDMM.

Causality Test Case 14

In Test Case 14 (Table 3.20), since there is no sequentially consistent execution where

r1 is equal to 1 and the program is correctly synchronized, non sequentially consistent

executions, where r1 is equal to 1, are not acceptable both in JMM and JDMM.

62

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

Table 3.20.: Causality Test Case 14

Initially a == b == y == 0 and y is volatile

Thread 1 Thread 2

r1 = a

if r1 == 0

y = 1

else

b = 1

do {

r2 = y

r3 = b

} while (r2+r3 == 0)

a = 1

Result r1 == r3 == 1, r2 == 0 ?

JMM JDMM

Forbidden Forbidden

Causality Test Case 15

Table 3.21.: Causality Test Case 15

Initially a == b == x == y == 0, and x and y are volatile

Thread 1 Thread 2 Thread 3

r0 = x

if r0 == 1

r1 = a

else

r1 = 0

if r1 == 0

y = 1

else

b = 1

do {

r2 = y

r3 = b

} while (r2+r3 == 0)

a = 1

x = 1

Result r0 == r1 == r3 == 1, r2 == 0 ?

JMM JDMM

Forbidden Forbidden

In Test Case 15 (Table 3.21), since there is no sequentially consistent execution where

r1 is equal to 1 and the program is correctly synchronized, non sequentially consistent

executions, where r1 is equal to 1, are not acceptable both in JMM and JDMM.

Causality Test Case 16

In Test Case 16 (Table 3.22), since the program is not correctly synchronized and val-

ues 2 and 1 are not out-of-thin-air for r1 and r2 respectively, this is an acceptable result

63

Chapter 3. The Memory Model F. Zakkak

Table 3.22.: Causality Test Case 16

Initially x == 0

Thread 1 Thread 2

r1 = x

x = 1

r2 = x

x = 2

Result r1 == 2, r2 == 1 ?

JMM JDMM

Allowed Allowed

under JMM. Note that the code in both threads features an anti-dependency (write-after-

read), meaning that the compiler cannot reorder the instructions. That said, to observe

the result r1 == 2, r2 == 1 it needs to be an artifact of out-of-order execution. Un-

der JDMM this behavior could be observed if Thread 1 would proceed to the write x =

1 and its write-back without waiting for the fetch of x to reach completion. Assuming the

same happens on Thread 2, it is possible for the write-back of x = 2 to be observed

by r1 = x on Thread 1 and the write-back of x = 1 to be observed by r2 = x on

Thread 2. Note that the anti-dependency is not broken, since the reads of x do not see

the writes of x performed subsequently by the same thread. As a result, the outcome

r1 == 2, r2 == 1 is valid in both JMM and JDMM.

Causality Test Case 17

Table 3.23.: Causality Test Case 17

Initially x == y == 0

Thread 1 Thread 2

r3 = x

if r3 != 42

x = 42

r1 = x

y = r1

r2 = y

x = r2

Result r1 == r2 == r3 == 42 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

r1 = 42

y = r1

r3 = x

if r3 != 42

x = 42

r2 = y

x = r2

In Test Case 17 (Table 3.23), an analysis of the code could result in the compiler to de-

termine that x will always see the value 42 in r1 = x. That said, the compiler could

change r1 = x to r1 = 42 and allow it along with the y = r1 assignment to be

moved earlier. Under JDMM, y = r1 may get written back by Thread 1, and y may

64

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

get (re)fetched by Thread 2 before the execution of r2 = y, resulting in r2 being as-

signed the value 42. Similarly, x = r2 may get written back by Thread 2, and x may

get (re)fetched by Thread 1 before the execution of r3 = x, resulting in r1, r2, and r3

being assigned the value 42. As a result, r1 == r2 == r3 == 42 is allowed under

both JMM and JDMM.

Causality Test Case 18

Table 3.24.: Causality Test Case 18

Initially x == y == 0

Thread 1 Thread 2

r3 = x

if r3 == 0

x = 42

r1 = x

y = r1

r2 = y

x = r2

Result r1 == r2 == r3 == 42 ?

JMM JDMM

Allowed Allowed

Possible Execution

Thread 1 Thread 2

r1 = 42

y = r1

r3 = x

if r3 == 0

x = 42

r2 = y

x = r2

In Test Case 18 (Table 3.24), an analysis of the code could result in the compiler to

determine that x can only have values 0 or 42, thus r3 != 0 implies that r3 is equal to

42. That said, as in test case 17 (Table 3.23) the compiler could change r1 = x to r1 =

42, allowing it along with the y = r1 assignment to be moved earlier. Under JDMM, y

= r1 may get written back by Thread 1, and y may get (re)fetched by Thread 2 before

the execution of r2 = y, resulting in r2 being assigned the value 42. Similarly, x =

r2may get written back by Thread 2, and xmay get (re)fetched by Thread 1 before the

execution of r3 = x, resulting in r1, r2, and r3 being assigned the value 42. As a

result, r1 == r2 == r3 == 42 is allowed under both JMM and JDMM.

Causality Test Case 19

In Test Case 19 (Table 3.25), an analysis of the code could result in the compiler to

determine that Thread 1 will always see the value 42 in r1 = x. That said, the compiler

could change r1 = x to r1 = 42, allowing it along with the y = r1 assignment to be

moved earlier, removing the happens-before relation between the x = 42 by Thread 2

and r1 = x by Thread 1. After the reordering taking place, test case 19 is similar to

test case 17 (Table 3.23) and should be allowed both under JMM and JDMM. However,

as Aspinall and Ševčı́k [7] and Torlak et al. [97] claim this test case is not allowed by

65

Chapter 3. The Memory Model F. Zakkak

Table 3.25.: Causality Test Case 19

Initially x == y == 0

Thread 1 Thread 2 Thread 3

join Thread 3

r1 = x

y = r1

r2 = y

x = r2

r3 = x

if r3 != 42

x = 42

Result r1 == r2 == r3 == 42 ?

JMM JDMM

Desirable Desirable

Possible Execution

Thread 1 Thread 2 Thread 3

r1 = 42

y = r1

join Thread 3

r2 = y

x = r2

r3 = x

if r3 != 42

x = 42

JMM due to stronger than needed rules in the validation process. Since JDMM relies

on JMM’s validation process it also forbids this test case. The changes on the validation

rules proposed by Aspinall and Ševčı́k [7], however, fix this issue for both JMM and

JDMM.

Causality Test Case 20

In Test Case 20 (Table 3.26), an analysis of the code could result in the compiler to

determine that x can only have values 0 or 42, thus r3 != 0 implies that r3 is equal

to 42. That said, as in test case 18 (Table 3.24) the compiler could change r1 = x to

r1 = 42, allowing it along with the y = r1 assignment to be moved earlier, removing

the happens-before relation between the x = 42 by Thread 2 and r1 = x by Thread

1. After the reordering taking place, test case 20 is similar to test case 18 (Table 3.24)

and should be allowed both under JMM and JDMM. However, as Aspinall and Ševčı́k

[7] and Torlak et al. [97] claim this test case, similarly to test case 19 (Table 3.25) is

not allowed by JMM due to stronger than needed rules in the validation process. Since

JDMM relies on JMM’s validation process it also forbids this test case. The changes on

the validation rules proposed by Aspinall and Ševčı́k [7], however, fix this issue for both

JMM and JDMM.

66

F. Zakkak 3.5. On JDMM’s expressiveness over JMM

Table 3.26.: Causality Test Case 20

Initially x == y == 0

Thread 1 Thread 2 Thread 3

join Thread 3

r1 = x

y = r1

r2 = y

x = r2

r3 = x

if r3 == 0

x = 42

Result r1 == r2 == r3 == 42 ?

JMM JDMM

Desirable Desirable

Possible Execution

Thread 1 Thread 2 Thread 3

r1 = 42

y = r1

join Thread 3

r2 = y

x = r2

r3 = x

if r3 == 0

x = 42

To sum up, JDMM satisfied all the causality tests satisfied by JMM, and is expected to

also satisfy test cases 19 and 20 if some of the rules in the validation process of JMM

relax as shown by Aspinall and Ševčı́k [7].

3.5.2. Code optimization: Reordering

Manson et al. prove that reordering two independent statements, when it does not af-

fect the happens-before relation of any other actions, is legal under JMM [70, §6.2.1].

Specifically, [70, Theorem 1] shows that two adjacent statements 𝑠𝑥 and 𝑠𝑦, where 𝑥 and

𝑦 are the corresponding actions of the statements, can be reordered as long as:

1. their reordering does not eliminate any transitive happens-before edges in any

valid execution

2. they are not conflicting accesses

3. they are not both synchronization or external actions

4. their reordering does not move an action before an infinite loop

5. their reordering preserves the intra-thread consistency

67

Chapter 3. The Memory Model F. Zakkak

We argue that the reorderings allowed by [70, Theorem 1] under JMM are the same as

the ones allowed under JDMM. In JDMM, there are four newly introduced (synthetic)

actions, namely fetch, write-back, invalidate and migrate. These actions do not map to

statements and may appear between the corresponding actions of adjacent statements.

As a result, the reordering of two independent statements might also require the reorder-

ing of some synthetic actions happening between them, according to the program order.

Assuming an execution 𝐸𝐷 where ∃𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ (𝑥 ≤𝑑
𝑝𝑜 𝑦 ≤𝑑

𝑝𝑜 𝑧) ∧ 𝑦.𝑘 ∈ {𝐹 , 𝐵, Iv , 𝑀},
and 𝑥 and 𝑦 are independent, we examine the allowed reorderings, depending on 𝑦’s
kind and relation to 𝑥 and 𝑧.

1. In the case where 𝑦 fetches the value that 𝑧 sees (Cs(𝑧) = 𝑦), then to preserve

𝑦 ≤𝑑
𝑐𝑜 𝑧 we only allow the reordering 𝑦 ≤𝑑

𝑝𝑜 𝑧 ≤𝑑
𝑝𝑜 𝑥.

2. In the case where 𝑦write-backs the value that 𝑥writes (Ab(𝑦) = 𝑥), then to preserve
𝑥 ≤𝑑

𝑐𝑜 𝑦 we only allow the reordering 𝑧 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑦.

3. In the case where 𝑦 migrates the thread to a different core (𝑦.𝑘 = M), we need to

preserveWFE-1 andWFE-2 in the post-reorder execution. As a result, depending

on the reordering we might need to introduce some additional synthetic actions

not previously present in the execution. Thus, changing the order of the actions

around 𝑦 can also affect the program’s performance.

In the case of reordering to 𝑦 ≤𝑑
𝑝𝑜 𝑧 ≤𝑑

𝑝𝑜 𝑥, any write-backs happening before 𝑦, in
the original execution, must preserve their ordering, in respect to 𝑦, except for the
write-back of 𝑥 if it happens to be a write (𝑥.𝑘 = W). If 𝑥 is a read 𝑥.𝑘 = R, then
we need to add a fetch action 𝑓, such that 𝑦 ≤𝑑

𝑐𝑜 𝑓 ≤𝑑
𝑐𝑜 𝑥.

In the case of reordering to 𝑧 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑦, any fetches previously happening after

𝑧, in the original execution, must preserve their ordering, in respect to 𝑧, except
for the fetch of 𝑧 if it happens to be a read (𝑧.𝑘 = R). If 𝑧 is a write 𝑧.𝑘 = W , then

we need to write it back before 𝑦.

Finally, in the case of reordering to 𝑧 ≤𝑑
𝑝𝑜 𝑦 ≤𝑑

𝑝𝑜 𝑥; if 𝑥 is a read (𝑥.𝑘 = R), a fetch

𝑓 = Cs(𝑥) needs to be added so that 𝑦 ≤𝑑
𝑐𝑜 𝑓 ≤𝑑

𝑐𝑜 𝑥; if 𝑥 is a write (𝑥.𝑘 = W) and

𝑥 gets written back before 𝑦, its write-back must be moved after 𝑦, according to

cache order.

4. In all other cases reordering of synthetic actions is not necessary.

Our model allows the same reorderings as JMM, as long as some synthetic actions are

also reordered as described above.

68

F. Zakkak 3.6. Case Study

3.6. Case Study

As a use case example we chose to use JDMM to verify the correctness of existing JVMs

regarding their compliance to JMM. To select the JVMs to examine, we went through

all publications citing [72], [71] or [70], looking for JVM implementations on non memory

coherent architectures that comply with JMM. We also searched for open-source JVMs

targeting non coherent architectures. We narrowed our search only to open-source

projects, since proprietary JVMs are not accompanied with enough details to extract

how they implement JMM. Surprisingly we found only one JVM claiming that it fully

complies with JMM (as defined by JSR-133 in the current Java Language Specification)

and targets non-cache-coherent architectures.

Note that in our verification procedure we omit the out-of-thin-air guarantee. The out-

of-thin-air guarantee depends on multiple factors orthogonal to caching, such as the

semantics of the underlying hardware, the correctness of the garbage collector imple-

mentation etc. As a result, to verify that Hera-JVM does not allow out-of-thin-air a thor-

ough investigation of a large number of components would be necessary. Since JDMM

focuses on caching and how to orchestrate the memory transfers, we chose to only ex-

amine the Hera-JVM compliance to JMM regarding these aspects.

Hera-JVM [73], also discussed in Section 2.2.6 targets the IBM’s Cell B.E. processor.

Cell B.E. is a heterogeneous multiprocessor featuring one POWER Processing Unit

(PPU) and eight Synergistic Processing Units (SPUs). The cores can access each

other’s memory through DMA transfers and there is no cache coherency. Hera-JVM

uses a software cache for heap-based variables, which caches whole objects or array

blocks of 1KiB. In the case of a cache miss, the JVM fetches a whole object or a 1KiB

block of an array. To do that, Hera-JVM initiates a DMA transfer to fetch the data and

blocks the execution of the Java thread until the DMA is complete. The cache uses a

write through policy: Whenever a thread writes to a cached address, Hera-JVM initiates

a non-blocking DMA, copying the new data to the main memory. To conform to JMM, a

Java thread blocks until all DMAs complete before releasing a lock, writing to a volatile

variable, context switching or migrating to another core. Furthermore, Hera-JVM purges

(invalidates) the caches before every monitor-enter (acquire lock) or volatile read, caus-

ing any future reads to fetch the data from the main memory.

Examining the text in [73] we were able to verify that most of the JDMM constraints are

satisfied by Hera-JVM. Hera-JVM appears to handle caches properly as far as it con-

cerns context switching, synchronized blocks and volatile variables. We were unable,

however, to verify that thread migration is properly handled. Specifically, Hera-JVM

claims that it writes back all dirty data before a thread migrates off an SPE core, but

does not explicitly state that the cache is invalidated. Section 3.3.5 describes a sce-

nario where this is not enough and may result in executions that are not consistent to

the happens-before order. In short, consider a thread that migrates to another core and

attempts to read a variable, which happens to be already cached on that core.

69

Chapter 3. The Memory Model F. Zakkak

To verify that Hera-JVM adheres to JMM we had to examine its source code and con-

tact the authors. We found that the source code does not explicitly invalidate the cache.

Note, however, that in Hera-JVM the context switching and the thread migration mech-

anisms are written in Java and rely on synchronized methods. This implicitly satisfies

WFE-1 and WFE-2, since the runtime synchronized method call for the context switch

or thread migration will invalidate the cache contents. Note here that Hera-JVM also

invalidates the caches for context switches, that as we show in Section 3.3.4 is not

mandatory and may result in additional energy and performance overheads.

70

Chapter 4.

Designing a JVM for hundreds of

incoherent cores

In this Chapter we discuss the key challenges of developing a Java Virtual Machine

(JVM) targeting a non-cache-coherent prototype. We propose techniques and algo-

rithms to overcome those challenges and scale Java to hundreds of cores. Our algo-

rithms exploit the spatial locality and memory coherency of coherent-islands in architec-

tures like EUROSERVER.

Parts of the work presented in this chapter have been published in the proceedings of

the 14th International Workshop on Java Technologies for Real-Time and Embedded

Systems (JTRES ’16) [33].

4.1. Key Challenges

The related literature, discussed in Chapter 2, underlines a number of key challenges

that JVM implementers face when the underlying architecture does not provide a co-

herent shared memory abstraction. In this section we present and discuss these chal-

lenges.

4.1.1. Memory Management

One of the key challenges is memory management, mainly due to the lack of a coherent

shared memory abstraction. Java uses a heap for objects and a stack per Java thread

for local variables. JMM defines that the Java heap is global per application. That is,

every thread of a Java programmust be able to access the whole Java heap. Thus, Java

developers do not need to worry about memory localities when writing their programs.

When the underlying hardware provides a shared-memory abstraction, the Java heap

is implicitly accessible by every java thread, since the whole memory is addressable

and the hardware is responsible for performing the actual access. In the absence of a

hardware shared-memory abstraction, the JVM is responsible to ensure that the whole

71

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

T1

T2

m-enter write m-exit

m-enter read m-exit

Figure 4.1.: Time window example.

Java heap is accessible from every Java thread in the application. Additionally, the JVM

is responsible to ensure that all threads get a coherent view of the Java heap.

Keeping the Java Heap Coherent

Early attempts to implement distributed JVMs delegate the memory management to

Software Distributed Shared Memory (SDSM) [32, 100, 102, 107]. As we state in Chap-

ter 2, however, SDSM is not expected to perform well, both performance and energy

wise. In order to reduce network traffic and execution time, distributed and heteroge-

neous JVMs implement some kind of software caching [4, 73, 107].

When a JVM employs software caching, to access a remote object it fetches a local

copy; to make dirty copies globally visible it writes them back (write-back); and to free

space in its cache or force an update on the next access it invalidates local copies (self-

invalidate). Since memory accesses are very common, software caches not only need

to be efficient, but they also require careful management to avoid redundant operations.

JMM defines when the Java heap should be updated so that all threads get a coherent

view of it. However, cache operations are not exposed to JMM, making it hard to under-

stand and implement software caches on non-cache-coherent memory architectures.

In Chapter 3 we present JDMM, an extension of JMM exposing such operations to the

programming model and argue about when they should commit to ensure adherence to

JMM. JDMM’s rules aim to be as relaxed as possible, so as to accept all legal executions

that adhere to the JMM. For instance, the JDMM intuitively states that a write-back

and its corresponding fetch may be executed anytime in the time window between a

write and the corresponding read, given that the write happens-before this read [57].

For instance, in Figure 4.1 the thread T1 performs a write that happens-before the

corresponding read in thread T2. The happens-before relationship is a result of the

monitor release, m-exit, by T1 and the subsequent monitor acquisition, m-enter, by

T2. The time window that JDMM allows a write-back and its corresponding fetch to be

performed is the big black dashed rectangle.

This flexibility on when these operations can be executed, allows for great optimization

in theory. However, in practice it is very difficult to even estimate this time window. The

JVM needs to keep extra information for every field in the program and constantly update

it. It needs to know the sequence of lock acquisition, who was the last writer, if their

write has been written back, and whether the cached value (if any) is consistent with

72

F. Zakkak 4.1. Key Challenges

the main memory or not. Implementing these over software caching seems prohibiting,

as the cost of the bookkeeping and the extra communication is expected to be much

higher than the expected benefits regarding energy, space, and performance.

Software caching has been previously studied in depth to improve performance and

usability of distributed systems, heterogeneous multiprocessors, and GPUs [19, 54, 59,

60, 61, 86, 87, 94, 104, 106]. These approaches aim to provide a software shared

virtual memory (SVM), a very similar task to providing a global heap view when the

underlying memory is actually distributed. Such SVM approaches, however, are page-

based and thus not suitable for an object-oriented language, where caching at the object

level is expected to be more efficient. Additionally, being page-based many of the SVM

approaches utilize hardware Memory Management Units (MMUs) to detect when a page

becomes dirty. Unfortunately, MMUs are not capable of providing such information at

the object granularity, since objects are a notion introduced by object oriented languages

and is not yet understood by common MMUs. Additionally, the coherence protocols

discussed in these works are more relaxed and fail to adhere to JMM. Some of these

software caches delegate the coherence procedures to the application, while others rely

on reference counting to detect when a cached line is no longer referenced to write it

back and release it. In the case of Java, however, reference counting does not suffice

to ensure a coherent view of the Java heap, as defined by JMM.

As a result, JVM implementations targeting many-core non-cache-coherent architec-

tures end up writing back all dirty data before a release operation and invalidating all

data at an acquisition operation, in order to force a re-fetch of the cached data. This

approach is safe and sound, but shrinks the time window, thus limiting the optimiza-

tion space. A visualization of the shrunk time windows is presented in Figure 4.1. The

small orange dashed rectangle on the upper left corner of the big rectangle is the time

window in which the write-back can be executed. Respectively the small cyan dashed

rectangle on the lower right corner is the time window in which the corresponding fetch

can be executed. However, even this way, the software caching benefits are significant,

making software caches a key component of JVMs targeting non-cache-coherent archi-

tectures. Note that although pre-fetching data, even in the shrunk time window, allows

for significant performance optimizations we do not implement it in this work. Alterna-

tively, we only fetch data at cache misses. Pre-fetching depends on program analysis

to infer which data are going to be accessed in the future. Such analyses are not spe-

cific to non cache coherent architectures or the Java Memory Model, thus they are out

of the scope of this work. In this thesis we present a software cache scheme that aims

to minimize memory transfers while adhering to JMM.

Garbage Collection

Process virtual machines implementing safe languages use garbage collection (GC)

for dynamic memory management. Garbage collectors cooperate with the memory al-

73

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

location mechanisms and perform automatic deallocation of unreachable objects—the

garbage. Garbage collectors in many cases are also tightly coupled with the memory

allocator to improve performance.

There are several classes of garbage collectors with different characteristics and behav-

ior. The state-of-the-art garbage collectors follow the tracing garbage collector model. A

tracing garbage collector is invoked periodically or when the VM runs out of free mem-

ory. It traverses the Java heap and the thread stacks to find references to heap objects

and reclaims any non referenced objects. Mark-and-sweep garbage collectors are typi-

cal tracing garbage collectors. They first trace object references and mark unreachable

objects which are then swept. To improve spatial locality, and simplify allocation, some

tracing garbage collectors, called copying garbage collectors, shift data or move them

to another memory segment to de-fragment the heap.

The use of software caches, however, hinders the process of garbage collection since

it introduces new roots for tracing garbage collectors. Normally, tracing garbage collec-

tors perform traversals following references in the Java heap and the Java stacks, and

marking the referenced objects as reachable to prevent their collection. With the intro-

duction of software caches, the garbage collector needs to follow all references in each

cache as well, to mark remotely accessible objects. To make matters worse, copying

garbage collectors need a way to update remote cache entries to reflect the new loca-

tion of an object. A stop-the-world garbage collector may trivially request the write-back

and invalidation of all the software caches before garbage collection. However, stop-

the-world garbage collectors require that all threads block before garbage collection,

resulting in long pauses.

Generational garbage collectors split the heap space in segments based on the objects’

age. This approach is based on the generational hypothesis that recently allocated

objects are more likely to be unreachable in the near future. In this scenario, objects

surviving a number of garbage collection cycles are promoted to older heap spaces. The

split heap space enables garbage collection to run on each segment independently.

Older heap segments need to be garbage collected only when the younger ones fail to

provide enough free memory, resulting in more efficient garbage collection.

Blackburn et al. [12] study the performance of three basic garbage collection algorithms,

copying semi-space, mark-sweep and reference counting along with their generational

counterparts and conclude that generational garbage collectors are outperforming their

counterparts. They also conclude that all applications benefit from the improved data

locality of young objects. That said, a copying garbage collector enabling contiguous

allocation is the best fit for the young heap segments, regardless of whether the appli-

cation follows the generational hypothesis. On the contrary, the choice of the garbage

collector for the mature heap segment is more complex and depends on the access and

mutation rate of the segment.

Implementing these techniques efficiently without a coherent shared memory abstrac-

tion is not trivial. Although the implementation of garbage collectors for non-cache-

74

F. Zakkak 4.1. Key Challenges

coherent architectures is orthogonal yet complementary to this work, and outside the

scope of this thesis, we discuss how the JVM can provide some properties to help in

the implementation of the garbage collector, and how the garbage collector can help the

JVM become more efficient.

4.1.2. Synchronization

The JMM defines several synchronization pairs, among which the only explicit ones dur-

ing a thread’s lifetime are monitorenter–monitorexit, and wait–notify. The

first pair ensures mutual exclusive accesses to critical sections, while the second ex-

plicitly orders concurrent threads. The wait and notify operations are tightly coupled

with monitors since a wait operation may only be executed by a thread owning the cor-

responding object’s monitor.

Note that we do not consider the java.util.concurrent library in this thesis. This

library is targeted to shared-memory machines and is usually implemented directly with

atomic primitives provided by shared memory architectures. Furthermore, its interaction

with JMM is not yet fully defined.

In Java, each object can be used as a lock, which is achieved with monitors. In most

JVMs this implies one extra field per object that is used as the monitor. At monitor

acquisition (enter) and release (exit) points the JVM not only needs to ensure proper

data handling (see Section 4.1.1) but also needs to ensure that monitor acquisitions are

consistent with mutual exclusion. That is, a monitor may only be owned by a single Java

thread at any time, allowing for that single thread to own the monitor multiple times—

re-entrant acquisition. In Java there are three ways to acquire an object’s monitor:

a) by executing a synchronized instance method of that object,

b) by executing the body of a synchronized block that synchronizes on the object,

and

c) for objects of type Class, by executing a synchronized static method of that

class.

In shared memory machines, monitors are implemented using instructions like load-

link/store-conditional, compare-and-swap, fetch-and-add, etc. Such instructions are not

always present in distributed memory architectures, thus JVM implementers need to

provide a solution independent of those instructions. This work proposes the use of

dedicated cores to act as synchronization managers and handle monitors.

75

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

4.1.3. Thread Scheduling

On a large number of cores, thread scheduling is a key challenge for JVM implementers.

Most JVMs on shared-memory machines delegate this job to the operating system (OS).

However, in non-cache-coherent architectures the OS is expected to comprise multiple

OS instances that rely on the application to perform the thread scheduling [39]. When

implementing a JVM, such schemes must be abstracted away and get hidden from the

programmer, since Java does not expose architectural and OS details.

Threads are a basic construct of parallel applications in Java. Threads are usually used

to create multiple servers, most often one per core, that execute some workloads and

exchange information through synchronization. Thread over-subscription is often sug-

gested for applications with blocking threads, to improve utilization by executing another

thread while another is blocked. Such issues that cannot be solved by the OS and

increase the complexity of a JVM for non-cache-coherent architectures include thread

synchronization, over-subscription of threads to cores, blocking and context-switching

threads, load balancing of threads to cores, and dynamic or non-balanced thread cre-

ation and destruction.

However, there are also applications that vary the number of threads during their life-

time. In such cases, the JVM needs to be able to adapt and distribute the workload to

load balance the system. Moreover, parallel applications with irregular or dynamic par-

allelism require continuous dynamic load balancing to improve resource utilization and

thus improve energy efficiency and performance.

Following task-based programming models, we propose the use of light-weight tasks in

applications with irregular parallelism. The main difference between threads and tasks

is that the latter are much more light-weight than the first. As a result, tasks are more

suitable for applications with irregular parallelism as their creation overhead is low and

schedulers can take advantage of their fine granularity to achieve better load balanc-

ing [8, 14, 15, 28, 93, 98].

On sharedmemory architectures the dominating load balancing algorithm for task based

applications is the work stealing algorithm introduced by Blumofe and Leiserson [16].

Work stealing on shared-memory machines is implemented using a lock-free double-

ended queue (deque), essentially relying on atomic operations like compare-and-swap

and fetch-and-add [22] that might not be available across coherent-islands in non-cache-

coherent architectures. The deque owner pops and pushes tasks to the bottom of the

deque, while idle cores pop tasks from the top of the deque.

Previous work [28, 76, 105] has presented a few implementations of the work-stealing

algorithm for clusters with an RDMA interconnect. These implementations, however, are

coupled with the task-based programming model. Task-based programming models

make assumptions about task properties which are not compliant with the properties of

Java threads. Such assumptions are that:

76

F. Zakkak 4.2. Design

a) each task is described by a task descriptor which among others contains informa-

tion about the memory footprint of the task—the memory it is going to access;

b) each task runs to completion without blocking.

While attempts to extend Java with constructs to satisfy such assumptions have been

proposed in the past [17, 30, 46, 99], such extensions still leave the scheduling problem

of legacy code open. As a result, to support legacy code, JVM implementers need to

implement load balancing techniques for threads as well. This work presents a hybrid al-

gorithm that allowswork-stealing within coherent-islands andwork-dealing –coordinated

thread exchange– across coherent-islands, through message passing.

4.2. Design

This section examines the applicability of previously proposed techniques, regarding

the key challenges discussed in Section 4.1, to non-cache-coherent many-core archi-

tectures, with the exception of the orthogonal problem of garbage collection. We dis-

cuss cases where existing techniques are inefficient and propose alternative solutions

towards designing a JVM for non-cache-coherent many-core architectures.

4.2.1. Memory Management

Since future non-cache-coherent architectures are expected to feature tens or hundreds

scratchpad memories we need a way to distribute the Java heap on them. To manage

local memories, we follow the JESSICA2 [107] paradigm and we split the local mem-

ories in three parts. The first two parts are the global heap area and the cache heap

area. The third part is reserved for the needs of the JVM itself, i.e., Java stacks, native

stacks and native heap. Note that this scheme matches that of Figure 3.2 (redrawn in

Figure 4.2) in Chapter 3, without the native memory part. Each scratchpad memory is

split in a cache heap area, marked in orange, and a global heap area, marked in cyan.

Caches fetch or write-back items from or to remote global heap areas, respectively. The

conjunction of all the global heap areas, forms the Java heap, similarly to Partitioned

Global Address Space (PGAS) models. Accesses to the local global heap area are di-

rect while accesses to remote global heap areas get cached in the cache heap area.

New objects are allocated on the local global heap area, unless it runs out of space. In

such cases, a request is sent to a remote global heap area.

77

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

State of the MemoryState of the Memory

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Local Slice

Global Slice

Figure 4.2.: The abstract machine (redraw of Figure 3.2)

Cache Heap Area

Partitioning the Java heap raises the need for caching to improve performance. To

access an object that is located in a remote global heap area, a DMA transfer for each

access would be too expensive, in terms of time and energy overhead. To reduce the

overhead, we propose the use of software caching. The cache heap area is managed

by a software cache implementation, working at object granularity. We choose to go

with object granularity, since in object oriented programming languages the fields of

an object are usually tightly coupled, and accesses to them usually occur near to each

other. Caching whole objects exploits the spatial and temporal locality of objects’ field

accesses. In the case of arrays, we follow the approach of McIlroy and Sventek [73]

and propose the fetch of array chunks instead of the whole array at once. Though,

instead of setting a byte size limit to the chunks, we suggest setting a threshold to the

number of elements, e.g., chunks of 100 elements instead of 1KiB chunks. This way

the performance of loops accessing array elements is bound by the number of iterations

instead of the size of the elements, which we believe is more intuitive to developers and

helps them to better understand the application’s behavior. Note that JMM is a relaxed

memory model, allowing the cache operations to be performed any time between a write

and the read that sees the value written by that write. That said, the software cache

design space is rather big, allowing for various approaches and policies. In this work

we propose a simple yet efficient software cache that avoids the overhead of extensive

bookkeeping.

In hierarchical architectures that comprise coherent islands, cache heap areas can be

78

F. Zakkak 4.2. Design

either shared, among different cores, or private. Shared cache heap areas have the

benefit of more efficient resource utilization through sharing a single copy of commonly

accessed objects instead of creating multiple copies of that same objects. However,

shared cache heap areas requiremore bookkeeping, introducing performance overhead

to cache operations and creating a contention point in coherent-islands. Shared cache

heap areas need information about the owner of each cache entry, so that they can only

write-back or invalidate the entries associated with a single thread and not the whole

cache heap area at synchronization points. Private cache heap areas, on the contrary,

allow for totally distributed caching, without any contention points.

Zhu et al. [107] suggest the use of a separate private cache heap area per Java thread

in JESSICA2, arguing that:

a) this approach is closer to the JMM definition,

b) it prevents threads from invalidating cached objects of other threads, and

c) the smaller cache size results in more efficient parsing, e.g., at flush operations.

In this thesis we propose a hybrid approach, where read accesses are cached into a

shared per-core cache, which we call object cache, while write accesses are cached into

a private per-thread cache, which we call write-buffer. As we show in Section 3.3.3,

JVM implementations allowing the sharing of a cache among different Java threads

still adhere to JDMM. Additionally, since in Java there are different bytecodes for read

and writes (i.e. getfield, setfield, etc.) the distinction of the two comes at no

additional runtime overhead. The object cache increases the cache hit rate and re-

duces the number of object copies on the system, while the write-buffer reduces the

delay of cache flushes. When the write-buffer becomes full, we write back all its data

and update the corresponding fields in the object cache, if the corresponding object is

still cached. Note that the combination of the write-buffer and the object cache form a

memory-hierarchy, where the write-buffer is below the object cache. That is, read ac-

cesses first go through the write-buffer and only if they miss they go to the object cache.

If they miss again, the JVM proceeds to fetch the corresponding object. This way, we

1. set an upper limit on the release operations’ blocking time;

2. allow for overlapping write-backs with computation when the threshold is met;

3. allow for bulk transfer of contiguous data, e.g., written elements of an array; and

4. allow for multiple writes to the same variable without the need to write back every

time.

Algorithms 1 and 2 present the main procedures of the software cache mechanisms.

When reading a remote object, the JVM first queries the write-buffer, and in the case

of a miss continues by querying the object cache. If both queries fail, then the JVM

fetches the remote object to the object cache. When writing on a remote object, the

JVM first queries the Java thread’s write-buffer, and in the case of a miss fetches the

79

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

object to it. Write-backs of the cache are straight forward; the JVMwrites back each dirty

field of the objects in the write-buffer and then moves those entries to the object cache.

This way, we ensure that the write-buffer only holds dirty data. To avoid the invalidation

of the whole object cache at synchronization points, we use a bitmap for each object

cache entry to mark which java threads had used that entry. Since the coherent-islands

are expected to be in the scale of tens of cores, we consider the space overhead of the

bitmap acceptable.

Adherence to the JMM To adhere to the JMM, we propose the intuitive approach of

ensuring that at release actions all dirty data are written back and at acquire actions all

cache entries are invalidated. However, this may result in long blocking release actions

for critical sections that perform writes on a large memory segments.

To demonstrate the overhead of such operations we perform a simple experiment, where

a single core transfers a given data set from another core’s scratchpad to its own.

Figure 4.3 shows the impact of the arguments’ size and number on the data transfer

time. On the y-axes we plot the clock cycles consumed to transfer all the data from one

core’s to another core’s scratchpad. On the x-axes we plot the total size of the data in

Bytes. Each line in the plot represents a different partitioning of the data, in 1, 10, 25,

50, and 100 arguments respectively. We observe that apart from the total data size the

partitioning of the data impacts the transfer time as well. This is a result of performing

multiple data transfers instead of a single bulk transfer.

105

106

103 104 105 106

C
lo
c
k
C
y
c
le
s

Total Size of Arguments in Bytes

1 Arg 10 Args 25 Args 50 Args 100 Args

Figure 4.3.: Impact of arguments size and number on delay

That said, the size of the write-buffer might significantly impact the performance and

80

F. Zakkak 4.2. Design

Algorithm 1: Hybrid software cache

Write-Buffer : A private, per Java thread, cache holding dirty copies of remote

objects, written by that thread

Object Cache: A shared, per core, cache holding clean copies of remote objects

Procedure read(object)

Input: The address of the object to be read

Output: The translated address

1 if the object resides in the current thread’s global heap space then

2 return the address of the object;
3 else if the object is cached in the write-buffer then
4 return the address of the object’s cached copy in the write-buffer;
5 else if the object is not cached in the object cache then
6 Fetch the object to the object cache;
7 end

8 Set the tag bit, corresponding to the current thread, on the cache entry’s bitmap;

9 return the address of the object’s cached copy in the object cache;

Procedure write(object)

Input: The address of the object to be written

Output: The translated address

1 if the object resides in the current thread’s global heap space then

2 return the address of the object;
3 else if the object is cached in the write-buffer then
4 return the address of the object’s cached copy in the write-buffer;
5 end

6 Fetch the object to the write-buffer;
7 return the address of the object’s cached copy in the write-buffer;

Procedure write-back cache

Result: All dirty data in the thread’s cache are written back and invalidated

1 foreach entry in the current thread’s write-buffer do
2 Write-back the dirty fields of the entry;

3 Copy the entry to the object cache;
4 Remove the entry from the write-buffer;
5 end

energy consumption of a program. A large write-buffer may allow for a bulk transfer of

some data, reducing the total transfer cost, while a small write-buffer results in faster

release operations at the cost of possibly more expensive in total data transfers. Addi-

tionally, a small write-buffer may result in multiple write-backs of the same data, if that

81

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

Algorithm 2: Hybrid software cache (cont.)

Procedure invalidate cache

Result: All cached entries are invalidated

1 foreach entry in the current thread’s write-buffer do
2 Invalidate the entry;

3 end

4 foreach entry in the object cache do
5 if the tag bit corresponding to the current thread is set in the entry’s bitmap then

6 Invalidate the entry;

7 end

8 end

data are being written more than once in the corresponding critical section. Since the

fine tuning of the write-buffer size depends on the nature of each program, a possible

optimization is the use of the just-in-time (JIT) compiler to set a write-buffer size per ap-

plication or even per code segment. JIT compilers are ubiquitous in modern JVMs and

generate optimized code by profiling code segments.

At acquisition operations, we write back all the dirty data, if any, and invalidate both

the object cache and the write-buffer, in order to force a re-fetch of the data if they

get accessed in the future. The write-back of the dirty data at acquisition operations

is necessary since we invalidate all the cached data. Consider an example where a

monitor is entered (acquire operation) then a write is performed, and a different monitor

is now entered (acquire operation). In this case simply invalidating all cached data,

would result in the loss of the write.

Replacement Policy Regarding the replacement policy of the software cache, we

avoid the book-keeping overhead of popular cache algorithms, like LRU, LFU etc. Black-

burn et al. [13] show that the total size of live objects in the benchmarks of the DaCapo

suite is on average about 6KiB, while the worst case scenario does not exceed 72 MiBs.

Given that the benchmarks are parallel and the threads do not access all the data at once

without any synchronization, we believe that using object caches on the granularity of

MiBs should suffice. Additionally, since object caches are being invalidated at acquire

operations, we expect the case of running out of space in the object cache to be rare. As

a result, when there is not enough space left in it, we invalidate the whole object cache.

Emptying the cache increases the number of fetches, but simplifies the allocation algo-

rithm, since there is no de-allocation or fragmentation. In the case of write-buffers we

simply flush and invalidate it, as we do in release operations. This way we also expect

to reduce the write-backs needed to be performed at synchronization points.

82

F. Zakkak 4.2. Design

Garbage Collection

As mentioned in Section 4.1.1, garbage collection on non-cache-coherent architectures

is a complicated issue, mostly orthogonal to the work presented in this thesis. In this

work, we briefly discuss how the JVM design can help in the design and implementation

of the garbage collector, and how the garbage collector can potentially improve the

JVM’s performance.

Distributed JVMs usually distribute garbage collection at the node level—each nodemay

garbage collect its own heap. The lack of the global memory view from a single thread

makes garbage collection distribution necessary to achieve good performance. Each

computation block has direct access to its global heap area, meaning it could potentially

perform a garbage collection on it. However, looking at a small portion of the heap

does not provide enough information about the reachability of an object. For instance,

if an object 𝐴 in global heap area 𝑋, is referenced by an object 𝐵 in global heap area

𝑌, a garbage collection cycle on the global heap area 𝑋 could result in 𝐴 being garbage

collected since there are no references to it known to the corresponding computation

unit.

To allow for local garbage collection cycles we propose the introduction of an additional

property per object, marking whether this object has been shared with any other compu-

tation units or not. Objects marked as shared are considered reachable, when perform-

ing local garbage collections, ensuring that they will not be garbage collected while they

might be still reachable from remote global heap areas or remote Java threads’ stacks.

Since new objects are normally allocated on the local global heap area, by default new

objects are marked as non shared. On the less common case where the local global

heap area runs out of space and memory is requested from a remote global heap area,

the new object is marked as shared immediately. A non shared object gets marked as

shared in the following cases:

a) when it is reachable from a thread that gets migrated to a remote computation

block, or

b) when a reference to it is created in a shared object.

This approach comes with the drawback that in applications with long reference graphs,

the marking overhead might be significant. Note, however, that all reachable objects,

from a shared object, are also shared. As a result the marking traversal does not tra-

verse already marked objects, reducing the marking overhead as the application pro-

gresses. Additionally, following the generational hypothesis, the majority of the objects

are expected to have short lifetimes and thus not get shared during their lifetime.

A generational garbage collector could take advantage of the object marking and use

it for local garbage collection cycles on the young generation. For the second genera-

tion a copying garbage collector performing adaptive home migration, as presented in

83

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

JESSICA2 [107], is expected to reduce remote memory accesses and improve the per-

formance and energy efficiency of the JVM.

There are also garbage collectors that employ heuristics to further improve spatial lo-

cality. Huang et al. [40] introduce the Online Object Reording (OOR) enhancement to

copying garbage collectors. OOR analyzes the accesses of frequently invoked methods

and identifies the frequently accessed fields. These fields are then copied to contiguous

memory addresses to further improve spatial locality and reduce execution time. OOR

introduces at most 2% overhead and yields up to 25% better performance compared to

the standard copying garbage collectors.

Since remote memory accesses are not coherent, we believe that a message passing

approach is needed to implement an incremental garbage collector, but further discus-

sion on this topic is out of this thesis’ scope.

4.2.2. Synchronization

To provide mutual exclusive access to monitors, a centralization point per object is nec-

essary. In shared memory architectures, this centralization point is the monitor field of

the object. Multiple threads compete to acquire ownership of that field through atomic

operations. In non-cache-coherent architectures, however, atomic operations are not

always available, but even when they are, high contention on a single memory address

is expected to reduce performance. A trivial approach is to move the centralization point

from the object’s monitor to the computation block attached to the global heap area

where the object resides. This, however, is expected to slow down monitor acquisition

when the corresponding computation block happens to be busy, since the requester will

need to wait for the computation block to serve its request. An interrupt driven approach

could reduce this delay at the cost of interrupting the application’s workload, which might

add variable overhead to the application, depending on the underlying hardware imple-

mentation of interrupts.

In this work, we propose the use of specialized cores that will act as synchronization

managers. Each synchronization manager is responsible for a subset of the objects in

the heap. Subsets need to be evenly distributed across synchronization managers and

not be responsible for objects in contiguous memory addresses, to better distribute the

requests. The synchronizationmanager employs amessage queue that constantly polls

for requests and serves them. To further improve energy efficiency, we suggest an inter-

ruption driven model where the synchronization manager idles until a message arrives.

This model, however, relies on the efficiency of the interruption handling mechanisms

and may significantly affect performance, depending on the underlying architecture.

Although the use of specialized cores has the disadvantage of sacrificing some com-

puting resources, we consider it a fair trade-off. Specialized cores reduce the latency of

monitor acquisition by being highly available. In architectures with heterogeneous cores

84

F. Zakkak 4.2. Design

or configurable hardware, synchronization managers can be run on low-end energy ef-

ficient cores, since the computation requirements are low.

Monitor Handling

To enter a monitor, Java threads send a request to the corresponding synchronization

manager and then yield. Synchronization managers hold a record for each monitor they

are responsible for. This record holds the owner of the monitor. When serving a request,

the synchronizationmanager checks whether the object is available—its owner is null.

If available, then it proceeds with updating its owner and sends back a message with

the current owner. If the current owner is different than the requesting thread, then the

monitor is already acquired and the thread needs to retry.

Since monitor-acquisition is blocking, the program only proceeds after the monitor is

acquired. To reduce network traffic, contention, and energy consumption, we extend

the record by adding an acquisition queue. This way, when a monitor is already taken,

instead of replying with the current owner, we add the requesting thread to the acquisi-

tion queue. Later, when the monitor becomes available, the synchronization manager

checks the acquisition queue and if it is not empty de-queues the oldest requester and

assigns it as the new owner of the monitor. Finally, a message is sent back to the re-

quester to notify it about the successful monitor acquisition.

To further reduce network traffic, contention on the synchronization manager, and en-

ergy consumption, we propose the reuse of a monitor up to a threshold of 𝑇 times, from

Java threads that run on the same coherent-island. A monitor acquired by a Java thread

may be directly assigned to another Java thread running on the same coherent-island

without notifying the synchronization manager. The threshold 𝑇 is used to provide some

fairness among threads running on different coherent-islands and avoid starvation.

To achieve this, we introduce the local monitor, a record resembling a monitor. It is es-

sentially an extension of the record used in the synchronization manager, that is com-

prised of:

a) the monitor’s owner;

b) a concurrent queue, called acquisition queue, that holds the threads waiting to

acquire the monitor;

c) the nesting level; and

d) a counter of continuous acquisitions of that monitor.

Local monitors are stored in a concurrent, local per coherent-island, data structure as-

sociating objects with local monitors.

Algorithms 3 and 4 present the algorithm for synchronization management with local

monitors. Procedure Monitor Enter presents the process of acquiring a monitor. When

85

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

Algorithm 3: Synchronization Management with Local Monitors

Procedure Monitor Enter(object)

Input: The object to enter its monitor

1 monitor ← get local monitor associated with the object;

2 if monitor is null then // there is no local monitor

3 monitor ← create new local monitor for object;

4 Try to atomically associate monitor with the object;

5 if failed then // Another thread associated a local monitor

6 Destroy monitor;
7 monitor ← get local monitor associated with the object;

8 end

9 end

10 if monitor’s owner is null then // the monitor is not acquired

11 Try to atomically assign current thread as the monitor’s owner;
12 if succeeded then

13 Send enter request to synchronization manager;

14 Yield until a positive reply arrives;

15 end

16 if the current thread is the monitor’s owner then
17 Increase monitor’s nesting;
18 else // The monitor is owned by another thread

19 Append current thread to monitor’s acquisition queue;
20 Yield until the monitor gets assigned to the current thread by a releasing thread or

a positive reply, for this thread arrives;

21 end

a Java thread requests ownership of an object’s monitor, it first creates a local monitor

if one does not exist. Introducing a new local monitor requires an update of the concur-

rent data structure that associates objects to monitors. We rely on the data structures

implementation to atomically insert the new monitor and in case of failure due to a race,

to return an error. Then if the monitor is available, the JVM proceeds by requesting the

monitor from the corresponding synchronization manager, assigning the local monitor

to the current thread, and increasing the nesting level. Since multiple threads may try

to acquire an available monitor concurrently, we synchronize them on the local moni-

tor’s owner field. The threads race to atomically set the owner. The winner sends a

request to the synchronization manager and yields until it gets a positive reply to its

request. The remaining threads get added to the local monitor’s acquisition queue and

yield until the monitor gets assigned to them by a releasing thread or they get a posi-

tive reply to their request. The same happens when the monitor is already owned by

another thread. Note that the threads in the acquisition queue need to check for replies

86

F. Zakkak 4.2. Design

Algorithm 4: Synchronization Management with Local Monitors (cont.)

Procedure Monitor Exit(object)

Input: The object to exit its monitor

1 monitor ← get local monitor associated with the object;

2 Decrease monitor’s nesting;
3 if monitor’s nesting > 0 then
4 return;

5 else if monitor’s acquisition queue is empty then

6 Set monitor’s acquisition counter to zero;

7 Send release message to synchronization manager;

8 else

9 thread ← dequeue thread from monitor’s acquisition queue;
10 if monitor’s acquisition counter < 𝑇 then

11 Increase monitor’s acquisition counter;
12 Assign thread as the monitor’s owner;
13 else

14 Set monitor’s acquisition counter to zero;

15 Send release message, combined with an acquire message for thread, to
synchronization manager;

16 Set monitor’s owner to ;

17 end

18 end

from the synchronization manager, although they never explicitly send a request to it.

This is related to the monitor exit procedure that we describe next. In the trivial case,

where the monitor is already owned by the current thread, the JVM locally increases the

nesting level.

Procedure Monitor Enter presents the process of releasing a monitor. When a thread

finally releases a monitor, it first decreases the nesting level. If the nesting level is not

zero then returns, since the monitor is still owned by the releasing thread. If the nesting

level reaches zero, the JVM checks if there are any threads on the same coherent-

island waiting to acquire the monitor. If not, the JVM resets the acquisition counter and

sends a release request to the synchronization manager. In the case that there are other

threads waiting for themonitor on the same coherent-island, the JVM dequeues a thread

from the queue and checks whether the monitor reuse threshold is reached. If not,

it proceeds by assigning the monitor to the dequeued thread and increasing the reuse

counter. If the threshold is reached it sends an acquire request for the dequeued thread

to the synchronization manager. This last step keeps the remote messages count low

since, for each object, only a single outstanding acquire request is allowed per coherent-

island. This request, however, is generated for a different thread than the current one;

87

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

thus, that other thread needs to check for the reply. This is why the entering threads

yield until they either get the monitor from an exiting thread, or until they get a positive

reply from the synchronization manager.

This design reduces the contention on the synchronization manager and the network in

three different ways:

a) limiting the acquire requests per coherent-island—each coherent-island may have

only a single outstanding acquire request per object;

b) combining monitor acquisitions—each monitor can be reused up to 𝑇 times before

returning it to the synchronization manager;

c) distributing monitor management—each local monitor keeps information about

nested acquisition eliminating redundant messages to the synchronization man-

ager about nesting.

Another benefit of this design is that it reduces remote memory transfers caused by

software cache write-backs. JMM defines that all writes performed before a release

operation, must become visible to reads performed after a subsequent acquire operation

of the same monitor. As long as the monitor ownership stays in a single coherent-island

and there are no other interleaving synchronization operations, the writes performed in

the critical section protected by that monitor does not need to be written back to the

remote memory. They only need to become visible to the thread, within the coherent-

island, that acquires the monitor next. When reusing a monitor, the releasing thread

may just propagate its dirty data to the cache of the thread to which it is assigning

the monitor. Since the JVM is aware of the monitor acquisition sequence, it is able to

transfer data between the write-buffers of the corresponding threads. Data accessed

within a critical section protected by a monitor are expected to be accessed by another

critical section protected by the same monitor. In such cases, writing dirty data back

to the remote location, and then fetching them back to the object cache is a waste of

resources, energy, and time. Directly copying between the write-buffers has the benefit

of transferring data within the coherent-island, which is more efficient. Finally, when the

monitor is released to the synchronization manager only the releasing thread needs to

issue write-backs to remote memories for its software cache dirty entries.

Object Wait-Notify

Since object-wait and object-notify are tightly coupled with monitors, we delegate them

to the synchronization manager as well. We further extend the monitor records in the

synchronization managers to include a waiters queue. When a thread invokes wait()

on an object, a release request combined with a wait request is sent to the correspond-

ing synchronization manager. The synchronization manager enqueues the thread to

the waiters queue and releases the monitor. Respectively, when a thread invokes no-

tify(), a notify request is sent to the synchronization manager, which dequeues a

88

F. Zakkak 4.2. Design

thread from the waiters queue and notifies it. The notification itself may be implemented

as a message, a remote write, or even a remote interrupt. In the case of notifyAll(),

as slightly different requests is sent to the synchronization manager, which dequeues

and notifies all threads in the waiters queue.

4.2.3. Thread Scheduling

Following the trends towards task-based programming models (see Section 4.1.3), we

suggest the use of tasks to scale an application on a large number of cores. However,

threads are a basic construct of parallel applications in Java, especially in legacy code.

One of the main differences between threads and tasks is that the latter are much lighter

than the first. As a result, tasks are more suitable for applications with irregular par-

allelism as their creation overhead is low, and there is enough research on scheduling

them accordingly to achieve better load balancing. Threads on the other hand are usu-

ally used to create multiple servers, most often one per core, that perform some work-

loads and exchange information through synchronization. Thread over-subscription is

often suggested for applications with blocking threads, to improve utilization by execut-

ing another thread while another is blocked.

To solve the thread scheduling problem, we propose the use of lock free deques within

coherent-islands, and message passing across coherent-islands. The use of deques

aims to allow for efficient work-stealing within the coherent-islands. Each core may

queue and dequeue threads to and from the bottom of its deque. In case its deque

becomes empty, it tries to steal threads from other cores in its coherent-island. If after

a number of attempts it fails to find work it attempts to get work from another coherent-

island.

For inter-coherent-island scheduling we propose the use of a work-dealing algorithm

instead of work-stealing, similarly to Acar et al. [1]. Our work-dealing algorithm differs

from that of Acar et al. [1] in that it solely relies on message passing and does not

depend on atomic operations. In work-dealing algorithms, the cores coordinate and

decide together how to balance work. That implies, however, that idle cores need to

wait for active cores to reply back, essentially delaying the load-balancing process. The

positive side is that the replies from other idling cores will be immediate, meaning that a

thread essentially ends up waiting only when there is work on the remote thread. Since

such message exchanges are expected to take a lot of time, we propose the use of

the half-steal approach, which Dinan et al. [28] show to be a good fit for distributed

architectures. In half-steal, instead of taking a single thread, the requester takes half

the threads from the remote queue. This way, it is less likely to run out of work in

a short period of time. Additionally, fetching more than one thread, allows for other

threads, in the requester’s coherent-island, to steal from its deque. To further improve

performancewe suggest the use of heuristics when choosing which threads to hand over

to the requester thread. For instance, threads that have not been started yet should be

89

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

preferred over threads that have started and yielded. However, at the time of writing we

do not yet use such heuristics in our scheduling algorithm.

Load Balancing

Algorithms 5 and 6 present the proposed algorithm for load balancing Java threads.

When a thread yields, the JVM invokes procedure Schedule Next Thread, which first

checks the current thread’s deque for available threads. On failure and while the deque

remains empty, it tries to steal work from neighboring threads on the same coherent-

island. When a few of the threads on an island are idle –their deques are empty–,

it means that there is not enough work for everyone on this island. As a result, we

put a threshold 𝑋 to the number of steal attempts from neighbors. We heuristically

use the ceiling of the square root of the number of cores per coherent-island as the

value of 𝑋, 𝑋 = ⌈√#Cores per island⌉. We base our choice on the reasoning that if

a core observes 𝑋 idle cores, then these cores have probably also observed 𝑋 idle

cores totalling approximately #Cores per island observed idle cores. Since at least 𝑋
more threads are also looking for work, we need to periodically come back and check

our neighbors’ deques as well. To achieve this, we set a threshold 𝑌 on the number

of failed remote requests. Following the reasoning above, we suggest the use of the

ceiling of the square root of the number of coherent-islands as the value of 𝑌, 𝑌 =

⌈√#Coherent islands⌉. Note that apart from stealing, the deque might get some work

from a new thread started by another thread, as we discuss below. The Steal Request

Handler procedure is straightforward. If the receiving thread is idle, it sends back a

NACK, notifying the requester it has no available work to hand over. On the other hand,

if it has some threads in its deque, it dequeues half of them and sends them to the

requester.

To further improve load balancing, we employ an algorithm to push fresh threads to other

cores. This way we expect to improve the performance of applications without nested

threads—threads that create other threads recursively to inherently distribute threads.

When starting a new thread, the Start New Thread procedure is invoked. The JVM

picks a random core from the same coherent-island and sends a schedule request to it

if its deque is not full. Otherwise it picks a random island and sends a schedule request

to it. The Schedule Request Handler procedure is responsible to handle the request

accordingly. If the receiver’s deque happens to be full, it randomly picks another island

and forwards the request to that island. Alternatively, if its deque is not full it adds the

new thread to its deque. Since the handler never sends back a reply, there is no need

for the threads sending schedule requests to wait for a reply, allowing for faster thread

creation and start, when using non-nested threading.

Thread join: In distributed environments the implementation of thread joins is also far

from trivial. In shared memory architectures, at high level, a thread joining on another

90

F. Zakkak 4.2. Design

Algorithm 5: Hybrid load balancing

Deque: A, per core, deque holding runnable Java threads

Procedure Schedule Next Thread

Result: A runnable Java thread is scheduled for execution

1 while deque is empty do

2 repeat ⌈√#Cores per island⌉ times

3 randomthread ← pick randomly a core in the same island;

4 if randomthread’s deque is not empty then

5 thread ← Dequeue a thread from randomthread’s deque top;
6 Schedule thread to be executed next;

7 return;

8 end

9 end

10 repeat ⌈√#Coherent islands⌉ times

11 randomisland ← pick randomly an island;

12 Send a steal request to randomisland;
13 if the reply is positive then

14 Add the threads from the reply to the bottom of the deque;
15 break;

16 end

17 end

18 Handle incoming requests (if any);

19 end

20 thread ← Dequeue a thread from deque’s bottom;

21 Schedule thread to be executed next;

Procedure Steal Request Handler

Result: An incoming steal request is handled

1 if deque is empty then

2 Send back a NACK;

3 else

4 Dequeue half of deque’s threads from its bottom and send back a message with

their addresses;

5 end

thread can yield and periodically wake up to check the status of that thread. When the

status reflects that the thread finished, then it may proceed. On non-cache-coherent

environments, however, this is not efficient. Once again we delegate this process to

the synchronization manager. Thread join can be implemented with the use of wait and

91

Chapter 4. Designing a JVM for hundreds of incoherent cores F. Zakkak

Algorithm 6: Hybrid load balancing (cont.)

Deque: A, per core, deque holding runnable Java threads

Procedure Start New Thread

Result: A newly created thread is added to the deque of some core

1 randomthread ← pick randomly a core in the same island;

2 if randomthread’s deque is full then
3 randomisland ← pick randomly an island;

4 Send a schedule request to randomisland;
5 else

6 Send a schedule request to randomthread;
7 end

Procedure Schedule Request Handler

Result: An incoming schedule request is handled

1 if deque is full then
2 randomisland ← pick randomly an island;

3 Forward the schedule request to randomisland;
4 else

5 Add the new thread, from the request, to the bottom of the deque;
6 end

notify. A thread calling the join function essentially waits on that object, which notifies

all waiters when it finishes. Following that scheme, we extend monitor records in the

synchronization manager to include a new joiners queue. Similarly to wait(), when a

thread invokes join() it gets added to the joiners queue of the corresponding Thread

object’s monitor. On thread completion, an analogous to notifyAll is invoked and

the synchronization manager dequeues and notifies all joiners in the queue.

92

Chapter 5.

DiSquawk:
512 Cores, 64 Memories, 1 JVM

To evaluate the algorithms proposed in Chapter 4 we develop DiSquawk, a proof-of-

concept JVM that targets non-cache-coherent many-core processors, and implement

our algorithms in it. In this Chapter we discuss implementation details of DiSquawk and
evaluate it on Formic-Cube, an emulator of a non-cache-coherent many-core processor.

Parts of the work presented in this chapter have been published in the proceedings of

the 14th International Workshop on Java Technologies for Real-Time and Embedded

Systems (JTRES ’16) [33].

5.1. Formic-Cube's architecture overview

Due to the lack of access to commercially available non-cache-coherent many-core pro-

cessors on the scale of hundreds of cores, we deploy DiSquawk on Formic-Cube [66], a

hardware processor prototype emulating a 512-core non-cache-coherent architecture.

The Formic-Cube consists of 64 Formic Boards[66] with a total of 512 MicroBlaze™ [74]

cores.

Each Formic board features:

• 8 MicroBlaze™ 32-bit RISC CPUs running at 10MHz

• 128MiB of memory (400MHz DDR DRAM)

Each MicroBlaze™ core features:

• a private non-coherent two-way 4KiB instruction L1 cache

• a private non-coherent two-way 8KiB data L1 cache

• a private non-coherent eight-way 256KiB L2 unified cache

• a DMA engine, supporting 64 outstanding DMAs (32 incoming and 32 outgoing)

• a 4KiB mailbox (messages can be of one or two words or even one cache-line)

93

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

• 128 counters, that support atomic increment, decrement and read (but no fetch

and add, compare and swap, etc.)

Formic-Cube supports a global address space in hardware and every core can access

every virtual address in the system. Each board implements a full network-on-chip. The

boards are interconnected in a 3D-mesh using GTP links. Cores can communicate

through multiple mechanisms. Using its DMA engine, a core can access any core’s

cache or DRAM in the system. Cores can issue cache-to-DRAM, DRAM-to-cache and

DRAM-to-DRAM DMAs. Mailboxes can also be used to transfer data to another core.

Another mean of communication is the use of the hardware counters.

To write-back parts of a cache (and not the whole cache) the programmer may issue a

DMA transfer from the cache to the local DRAM. DMA transfers operate on cache line

granularity (and alignment). Note, however, that invalidation on cache line granularity

is not supported. Instead, the whole cache must be invalidated.

Limitations Imposed by Formic-Cube

Formic-Cube as a prototype exhibits some limitations. One of them is the lack of coher-

ent islands. As a result, DiSquawk does not implement all the mechanisms discussed

in Section 4.2, but focuses on the ones we consider mostly unexplored by previous

literature—the inter-coherent-island mechanisms. Intra-coherent-island mechanisms

mainly focus on the use of atomic operations and concurrent data structures, that are

thoroughly studied in the literature.

Additionally, due to the absence of an OS, it limits the range of benchmarks it can cur-

rently execute, to e.g., applications not using sockets or a file system. Formic-Cube

also lacks of persistent memory. The whole VM, along with the class files of the appli-

cation, is currently loaded in-memory at boot time. Formic-Cube’s clock is scaled down

to 10Mhz to emulate a 512-core with a high speed network on chip (NoC). As a result

the use of long running compute intensive benchmarks is prohibiting.

5.2. Base Virtual Machine

To avoid the overhead of developing a JVM from scratch, we build DiSquawk on top

of the Squawk VM [91]. Squawk is an interpreter based JVM, designed to implement

the Connected Limited Device Configuration (CLDC) on embedded systems with lim-

ited resources. The main reason we chose Squawk over other more advanced JVM’s,

like the JikesRVM [3] or the MaxineVM [101], is that Squawk is the only, to the best of

our knowledge, available VM designed to run on the bare metal—it does not rely on the

existence of an OS. Squawk is mainly written in Java, with a minimal core written in C to

94

F. Zakkak 5.3. Implementation

bootstrap the system and execute system specific operations. Existing operating sys-

tems do not support the Formic-Cube architecture, so running on the bare metal allows

us to avoid porting an OS on Formic-Cube, an open research question in itself. Addi-

tionally, not relying on an OS increases the portability of DiSquawk to future prototypes
that may not be supported by existing operating systems as well. Finally, avoiding the

OS layer allows us to better understand the VM’s behavior and evaluate our work, by

reducing noise in the measurements.

Squawk comes only with an interpreter and no JIT (Just-In-Time) compilation support.

Although JIT is considered the state-of-the-art implementation for byte-compiled pro-

gramming languages we consider it to be an optimization and independent of the prob-

lems we are trying to solve. Our contributions in this thesis are applicable to virtual ma-

chines with JIT support as well. Additionally, as we discuss in Section 5.4.5 JIT has the

potential to improve the performance of our mechanisms and reduce the overhead they

introduce.

DiSquawk is implemented as a combination of modified Squawk VM instances, each

running on a different core of Formic-Cube, utilizing all the available cores. These in-

stances only differ from each other in that they each have a unique ID equal to the core

ID, and access a different global heap area and cache heap area. At application start,

the instance with core ID zero executes the Main function, while the rest instances en-

ter an infinite loop polling their mailboxes for incoming requests. To avoid the overhead

of transferring bytecodes to caches, we keep a copy of the application in the native

memory of each modified Squawk instance.

5.3. Implementation

5.3.1. Memory Management

The Formic-Cube’s total memory is 8GiB (64×128MiB). However, the MicroBlaze™ pro-

cessor can address up to 4GiB of memory (32-bit CPU). In DiSquawk’s design we take
advantage of this feature and split the memory to two segments. On each Formic Board,

64MiB are dedicated to the global heap area and are addressable and accessible from

every core on the system, through a virtual global address space. The remaining 64MiB

are used as follows. The DiSquawk reserves 4MiB for the binary code (read-only).

The DiSquawk reserves 1MiB per core for the JVM’s and the Java’s stacks. Finally, the

DiSquawk reserves 6.5MiB per core as the cache heap area for caching objects from

remote global heap areas, as discussed in Chapter 4.

Figure 5.1 is a visualization of the memory partitioning. The dark block is the reserved

space for the binary code. The turquoise scales are the private memory segments used

for the JVM’s and the Java’s stacks as well as for caching. Each scale denotes a different

core. Finally the light green block is the memory partition that serves as a heap slice.

95

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

JavaTM heap slice
64MB

Private per core 7.5MB:
● Stack 1MB-4KB
● Cache 6.5MB
● Print Buffer 4KB

Private per core 7.5MB:
● Stack 1MB-4KB
● Cache 6.5MB
● Print Buffer 4KB

B
I
N
A
R
Y

C
O
D
E

4MB

VM 1

VM 2

VM 3

VM 4

VM 5

VM 6

VM 7

VM 8

Cache
Stack Total size: 128MB

Figure 5.1.: Memory Partitioning

The DiSquawk further splits the Java heap slice in eight artificial sub-slices —one per

core. This further splitting defines which core is responsible for which memory range,

for special operations such as garbage collection, memory allocation, and so on.

Figure 5.2 shows the interpretation of a virtual address in the global address space. The

6 most significant bits (MSBs) of the virtual address are interpreted as the board’s id that

owns the physical memory that this virtual address maps to. The rest 26 bits are the

offset in the physical memory of that board, where this virtual address maps. Because

Formic-Cube does not support DMA transfers with finer granularity than the size of a

cache-line, we make DiSquawk’s allocator to work on cache line granularity, to avoid

implications regarding software caching as we discuss in Section 5.3.2. This way we

restrict each cache-line to a single object. As a result, on the Formic-Cube the 6 least

significant bits (LSBs) are always zero in the virtual addresses. Additionally, the 3 MSBs

of the offset can be used to find the core ID of the physical core that is responsible for

the memory range in which the virtual address maps to.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset [0x00000000–0x04000000)Board ID

Cache alignmentCore ID

Figure 5.2.: Virtual address interpretation

96

F. Zakkak 5.3. Implementation

To calculate the physical address on the corresponding board, DiSquawk adds an ex-

tra offset of 64MiB (0x04000000) to the interpreted offset, since the heap slices are

mapped in the higher 64MiB of the physical memory. As a result, the actual offset is in

the range [0x04000000 − 0x08000000).

In this implementation each board needs to address a total of 4GiB (global Heap) plus

64MiBs (local storage). Unfortunately the 32 bits of the MicroBlaze™ are not enough to

address this size. As a result, Virtual addresses with their 6 MSBs set to zero conflict

with the local physical addresses, in the range [0x00000000 − 0x04000000), of the first

board with ID 0. To resolve this issue, DiSquawk assigns IDs in the range [1 − 64)
instead of the range [0 − 64). As a result we lose 64MiBs of the global Heap memory

(those of the 64th board). Note, that this is a limitation of our architecture supporting

up to 32bit addresses. Most architectures nowadays support up to 64bit addresses. In

such architectures there is no need to “sacrifice” any memory.

Note also that the range [0x04000000 − 0x08000000) still conflicts with translated ad-

dresses which happen to map in the current board’s heap slice. This is a problem only

if DiSquawk tries to translate an already translated address. DiSquawk performs trans-

lation on a late stage, thus avoiding this behavior.

Memory allocation

DiSquawk is built on the bare-metal, thus malloc is not available. DiSquawk uses

the memory partitioning described above. When a thread needs to allocate a chunk

of memory, it gets it from its own Java-heap slice. Whenever a chunk of memory is

requested, DiSquawk rounds it up to the cache-line size. As a result, two different ob-

jects never share the same cache-line. As described in Section 5.3.2 this is mandatory

to avoid implications regarding software caching.

As a first implementation, DiSquawk can only allocate memory from its sub-slice. This

way memory allocation is completely distributed to the eight cores and can be done with-

out any synchronization. However, this limits the size of memory a thread can allocate

to 8MiBs. To overcome this limitation we also support remote allocation. In case that a

DiSquawk instance cannot allocate the needed space locally it can request the missing

memory from a remote DiSquawk instance.

5.3.2. Software Cache

Partitioning the Java Heap across 64 boards raises the need for caching. Each core is

assigned a part of the local scratchpad, which it uses as its private software cache. This

software cache is entirely managed by the JVM, transparently to the programmer. To

access an object that is located in a remote DRAM module, a DMA transfer for each ac-

cess would be too expensive. To reduce the overhead, DiSquawk is based on software

97

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

caching at object granularity, as we describe in Chapter 4. Caching, however, requires

extra effort in order to provide a coherent view of the data, as it is defined in Chapter 3.

Since the 4GiB Java heap is sliced, to find out in which heap slice a heap address

resides, DiSquawk right-shifts the corresponding heap address by 26 bits. The resulting
number is the Java heap slice ID. On the Formic-Cube we use one-to-one mapping of

Java heap slice IDs to board IDs as we describe in Section 5.3.1. In the case that the

resulting Java heap slice ID is different than the board ID of the core trying to access

the corresponding heap address, DiSquawk issues a remote DMA transfer to fetch the

corresponding cache-line to the local software cache.

For the software cache implementation we employ a double hashing hashtable. The

first hash function uses a combination of the object’s relative placement in its home’s

global heap area, and its home ID. This way, we avoid collisions between objects with

the same relative placement on different scratchpads. Such cases are expected to be

common, since every DiSquawk instance is identical and expected to behave similarly.

The second hash function uses the 10 MSBs of the address, where the first 6 MSBs

denote the home scratchpad and the next 3 bits denote the home core. This way, ob-

jects from different homes follow different probes, reducing the collisions. Note that the

scratchpad IDs start from 1 instead of 0 to avoid the case of the second hash function

returning zero for objects with core ID 0 and scratchpad ID 0. As a result, the second

hash function returns integers in the range [8 − 512).

Normally, for only to-be-written memory chunks there is no need to perform a fetch be-

fore writing, since the fetched data will eventually be overwritten. Formic-Cube, how-

ever, only supports write-backs of cache-line granularity. As a result, DiSquawk needs

to first fetch the cache-lines that will be written, to avoid writing back random data for

the non-written part. This also restricts concurrent accesses to a single cache-line. Two

threads are not allowed to write on different parts of a single cache-line, since at the

write-back the second writer of the cache-line would overwrite any writes performed by

the first one. We implement this bymodifyingDiSquawk’s allocator to work on cache line
granularity. This way we restrict each cache-line to a single object. However, correctly

synchronized writes to different fields of an object may still produce invalid executions

if the fields happen to be in the same cache-line and the writes are executed concur-

rently, since one or more of the writes might get lost. In our experiments we avoid such

scenarios by using the object’s monitor to access all the fields of a single object.

Note that other architectures like Cell B.E., support remote DMA transfers with finer

granularity than a cache-line. On such architectures we can have many cores writing

on different parts of a cache-line, enabling more flexibility and allowing finer locking

mechanisms. Due to the object oriented nature of Java, however, it is not expected

to have different locks to access different fields of the same object all stored within the

same cache line. Thus, we do not expect enabling finer locking granularity than object

granularity to significantly improve the performance of Java applications. The flexibility

98

F. Zakkak 5.3. Implementation

however, to pack multiple concurrently accessible objects in a single cache-line could

significantly reduce memory fragmentation in some programs.

Object Caching

DiSquawk’s software cache operates on object granularity. When fetching an object,

DiSquawk always fetches the whole object. In DiSquawk an object in memory can

be visualized as an array. In Figure 5.3 we provide a visualization of the in memory

structure of the stored data.

(a) Object

Class pointer

Field 1

Field 2

…

Field N

(b) Array

Array Length

Class Pointer

Object 1

Object 2

…

Object N

(c) Class

Class pointer

Static 1

Static 2

…

Static N

(d) Method

Defining Class

BYTECODE_ARRAY Length

Pointer to

BYTECODE_ARRAY Class

Method Body

…

Figure 5.3.: Visualization of the stored data layout. The headers metadata are colored.

Field access are essentially accesses to predefined, per field, offsets in this array-like

structure. Partially fetching an object requires an extra directory structure that maps

field numbers to offsets. Since most objects usually fit in a single cache line [13], we

consider the overhead of keeping such an extra directory prohibitive, both in terms of

space and performance.

Fetch and Write-back

When a virtual address is dereferenced and its home node is different than the core

dereferencing it and it is not present in the cache or the write buffer, DiSquawk issues

an object fetch. The first step is to allocate a single cache-line in the software cache

and fetch, with a DMA transfer, the first cache-line of the object. As shown in Figure 5.3,

the first cache-line includes enough information to infer the object’s class and figure out

its instance size. If the instance size of the class is less than a cache-line, then the

whole object has already been fetched. If, however, the class instance size is larger

than a single cache-line then DiSquawk allocates a new memory chunk of that size in

the software cache and issues a new DMA transfer of that size.

The write-back process is trivial. DiSquawk issues a DMA transfer of the cached object

to its home node. Note here that DiSquawk could issue smaller DMA transfers and only

99

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

write-back dirty parts of the cached object instead. This is not possible, however, due

to the lack of support for non cache-line granularity transfers by Formic-Cube.

5.3.3. Thread Scheduling

Since Squawk was not initially designed for many-core architectures, in DiSquawk we

improve its thread scheduling mechanism. Due to the lack of coherent-islands we are

not able to take advantage of the full, hybrid, load balancing mechanism presented

in Section 4.2.3. Instead, we implement a variation of the Start New Thread and Sched-

ule Request Handler procedures. In our implementation, since there are no coherent-

islands, the procedures pick randomly a core from the system to send the schedule

request.

After instantiating a thread object, when the Thread.start() function is invoked the

DiSquawk scheduler peeks a core and schedules the thread in its thread queue. Specif-
ically, the running thread instantiates the new thread in its core’s memory. When the

Thread.start() is invoked, that core sends a message to the core peeked by the

scheduler. This message contains a special operation code (op-code), the sender’s

core ID, and the previously instantiated thread object’s address. On the other end (i.e.

the peeked core) at every reschedule (see below) the corresponding core checks its

mailbox for new messages. In the case of a message with the previously mentioned

special op-code the receiver: first fetches the remote thread object from the sender’s

hardware cache to the receiver’s software cache; locally allocates a stack for the thread;

and then adds it to the thread queue.

By allocating the stack locally, we make most of the thread related accesses local. Ad-

ditionally, in Squawk and DiSquawk there is a JVM specific class, VMThread, that acts

as the backend of the java.lang.Thread class. As a result, each Thread object is

tightly coupled with a VMThread object. The VMThread instance is the one holding the

thread’s stack and runtime information for that thread. Since the VMThread object is

only useful after starting (through Thread.start()) a Thread object, we instantiate

it lazely together with the stack. As a result, by allocating a thread locally to the global

heap space of the core where it was scheduled, we avoid using the cache for every

memory access on its stack. Additionally, since the thread’s state is only changed at the

beginning and at the end of the thread’s life we keep it at the thread’s initial host core.

This way, threads querying the state of another thread synchronize with the Thread

instance instead of the VMThread instance. When the thread reaches completion it up-

dates its Thread instance state, without acquiring the monitor, writes back the cached

Thread instance, and notifies any joiners through the synchronization manager. Note

that this is safe, since only a single core —the one running the thread— can change its

state.

In Squawk and DiSquawk rescheduling happens when:

100

F. Zakkak 5.3. Implementation

1. A thread’s start() method is called

2. A thread’s yield() method is called

3. A thread’s sleep() method is called

4. A thread invokes the join() method of another thread

5. A thread waits for an event

6. A thread fails to enter a monitor

7. A thread exits a monitor and there are threads with higher priority waiting for the

monitor

8. A thread invokes an object’s wait() method

9. A thread reaches completion or aborts

10. A thread reaches its 1000th backward branch. That said, preemption is working

based on backward branches quanta (1000) and not on time or bytecode quanta.

5.3.4. Java Monitors and The Synchronization Manager

Java monitors are essentially re-entrant locks associated with Java objects. In Java,

each object is implicitly associated with a monitor and can be used in a synchro-

nized block as the synchronization point. Java monitors are usually implemented us-

ing atomic operations, such as compare and swap, in shared-memory cache coherent

architectures, relying on the hardware to synchronize multiple threads trying to obtain

the monitor. Such atomic operations are not standard in non cache coherent architec-

tures, though [39, 66].

To implement the Java monitors on such architectures we use the synchronization man-

agers described in Chapter 4. To keep contention at low levels we use multiple syn-

chronization managers according to the number of available cores on the system. Each

synchronization manager is responsible for a number of objects in the system, and each

object can be associated with its synchronization manager using a hash function. When

a thread executes a monitor-enter the JVM communicates with the corresponding syn-

chronization manager and requests ownership of the monitor. This way all requests re-

garding a single monitor end up in the corresponding synchronization manager’s hard-

waremessage queue, fromwhere they are handled by the synchronizationmanager one

by one, in the order they arrived. We essentially delegate the synchronization of the

requests to the architecture’s network on chip, and provide mutual exclusion through

the synchronization managers.

To reduce the synchronization managers’ load, the network’s traffic and contention, and

to keep energy consumption low we take advantage of the blocking nature of monitors.

Instead of sending back negative responses, when a monitor is already acquired by

101

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

some other thread, we queue the monitor-enter requests in the synchronization man-

ager, and assign the monitor to the oldest requester when it becomes available. This

way we ensure fairness in the order that the requests are handled. Although this is not

required by the Java Language Specification [37], we consider it better than arbitrarily

choosing one of the waiting threads, since it avoids the starvation of threads. Addition-

ally, when a thread is waiting for a monitor it yields to free up resources for other threads.

Instead of periodically rescheduling such waiting threads —as we do with other yielded

threads— we use a mechanism that reschedules them only when the monitor they re-

quested has been assigned to them. That is, the synchronization manager has send an

acknowledgement message to the core executing the waiting thread.

Since Formic-Cube does not provide coherent islands, in our implementation we use

the local monitors to optimize monitor enter requests performed to the same monitor by

multiple Java threads running on a single core, instead of a coherent island.

For the communication between the Squawk VM instances and the synchronization

managers we rely on the hardware mailboxes.

As discussed in Chapter 4, out design extends the monitors in a way such that each

object copy has a local monitor and there is a single central monitor per object used to

ensuremutually exclusive acquisition. Localmonitors are used to synchronize accesses

to objects by Java threads running on the same core, while central monitors are used

to synchronize accesses to objects by Java threads running on different cores.

The central monitors are managed by the synchronization managers which are running

on dedicated cores. The monitors are sliced in 𝑁 sets where 𝑁 is the number of syn-

chronization managers. All sets are independent and each slice is managed by a single

synchronization manager. As a result an object’s central monitor can only be managed

by a single synchronization manager. With each object’s central monitor being man-

aged by one single manager, we can ensure that there is no possibility for two different,

correctly synchronized, Java threads to enter the same critical region concurrently. The

synchronization manager’s mailbox acts as a serialization point for the incoming re-

quests. It’s the synchronization manager responsibility to handle these requests and

reply appropriately to the corresponding requester.

Each request consists of two words packed in a single atomic message. The first word

includes the request’s operation code packed with the requester’s core id and board id.

A visualization of the packing is shown in Figure 5.4. The second word of a request

includes the object we want the synchronization manager to act on.

Similarly, In the case of replies to monitor enter we send two words per reply. The first

word includes the synchronization managers reply and the second word includes the

object the synchronization manager acted on and relates to this reply.

102

F. Zakkak 5.3. Implementation
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Core IDBoard ID

MMP_OPS_MNTR_XXXRequesterReserved

Figure 5.4.: Visualization of requests to synchronization manager

5.3.5. Volatile Variables

Volatile variables are special, because accessing them is a form of synchronization.

Specifically, volatile reads act as acquire operations, while volatile writes act as release

operations. That said, after a volatile read any data visible to the last writer of the cor-

responding volatile variable must become visible to the reader. Volatile accesses are

usually implemented using memory fences provided by the underlying architecture in

shared-memory cache coherent systems [58].

Since non cache coherent architectures do not provide memory fences, in our imple-

mentation we rely on synchronization managers to ensure a total ordering between the

various accesses to a volatile variable. Essentially we treat volatile accesses as syn-

chronized blocks protected by a special monitor, unique per volatile variable. There-

fore, we write back and invalidate any cached data before volatile accesses, and write

back the dirty data immediately after volatile writes. This approach comes at the cost of

unnecessary cache invalidations in the case of volatile writes, which should not be of-

ten since volatile variables are usually employed as a completion, interruption or status

flag [80, §3.1.4] —meaning that they are being mostly read during their life-cycle.

A side-effect of this implementation is the provision of mutual exclusion to concurrent

accesses on the same volatile variable. Since Formic provides no guarantees about the

atomicity of memory accesses, we rely on this side-effect to ensure a volatile read will

never return an out-of-thin-air value due to a partial update.

5.3.6. Liveness Detection

For the detection of thread termination and checking of liveness we rely on volatile vari-

ables. Each thread is described using a JVM internal object, which holds a volatile

variable with the state of the thread. The supported states are, spawned, alive, dead.

We implement isAlive() as a simple read to that state, if it is equal to alive then

we return true. On the other hand, for the join() method we avoid spinning on the

state variable in an effort to reduce energy consumption and free up resources for other

threads in the system. We base our join() implementation on the wait()/notify()

mechanism. Since a thread invoking join() will have to wait until the completion of

103

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

105

106

107

108

109

101 102 103 104

E
x
e
c
u
ti
o
n
ti
m
e
(c
lo
c
k
c
y
c
le
s
)

Number of accesses

with Caching
without Caching

Figure 5.5.: The memory abstraction.

the thread it joins, we yield it by invoking wait on the JVM internal object, describing the

thread. When the corresponding thread reaches completion it invokes notifyAll()

on that internal object and wakes up any joiners.

5.4. Evaluation

5.4.1. Software Cache Impact

To demonstrate the impact of software caching we perform a simple experiment where

a thread accesses a remote Integer object 𝑁 times and compare the execution time

when software caching is enabled and when it is disabled. Figure 5.5 presents the

results of this experiment. On the x-axis is the number of accesses performed by the

thread and on y-axis is the total execution time in clock cycles. The dashed orange line

plots the execution time when software caching is disabled, and the solid blue line plots

the execution time when software caching is enabled. We observe that the execution

time is about an order of magnitude longer when software caching is disabled, even for

objects of a simple class like Integer.

5.4.2. Scheduling

To evaluate the performance of the Thread.start() implementation we use a micro-

benchmark that creates a single thread and schedules it to a remote idling core, then

104

F. Zakkak 5.4. Evaluation

it joins on it and completes. Our measurements show that from the beginning of the

Thread.start()method to the actual run of the thread on an idle core, it takes 18640

clock cycles on average. Of this time: 1.6% is spent to choose a remote core and to

construct and issue the schedule request; only about 0.5% is spent for the schedule re-

quest transfer itself; 28% is spent to allocate and construct the new VMThread instance;

55% is spent to initialize the VMThread instance; 4% is spent to allocate the stack; 1%

is spent to add it to the runnable’s queue; 8% is spent waiting for the JVM to schedule

it; and the last 2% is spent in other more fine-grained tasks. The measurements show

that the most time is spent in local computations performed in Java, since Squawk is

written in Java. Squawk’s interpreter, however, is not as efficient as the state-of-the-art

JVMs with JIT compilation support. We expect even faster thread scheduling in modern

JVMs. Regarding thread completion, our measurements show that from the end of a

thread till one of its joiners gets notified, it takes around 20000 clock cycles. Of this time,

about 15% is spent for the bookkeeping, while the remaining 85% is spent in message

transfers and mostly in waking up the joiner. Compared to an early implementation not

using the wrapper described above, we achieve a 10× speedup in join().

5.4.3. Synchronization Manager

10

100

0 100 200 300 400 500

E
x
e
c
u
ti
o
n
ti
m
e

(M
ill
io
n
c
lo
c
k
c
y
c
le
s
)

Number of Threads

Figure 5.6.: Execution Time (1 Synchronization Manager) vs #Threads

For the synchronization managers we reserve one of the computational blocks. On

each core of this block we deploy a synchronization manager. The synchronization

managers constantly poll their hardware message queue for incoming requests and di-

rectly serve any available requests. To find the number of synchronization managers

needed to efficiently handle the requests from 504 cores —the cores left after reserving

a board for synchronization managers—we create a micro-benchmark with 504 threads

105

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

0

5

10

15

20

25

0 100 200 300 400 500

T
h
ro
u
g
h
p
u
t
(R
e
q
u
e
s
ts
p
e
r
1
0
,0
0
0
c
y
c
le
s
)

#Threads

Figure 5.7.: Synchronization Manager Throughput vs #Threads

that each requests to enter a different monitor. We run it with a single synchronization

manager and present the results in Figure 5.6. The results show that a single synchro-

nization manager is able to handle up to 256 cores; after that point it starts to become

a bottleneck. More interestingly, as shown in Figure 5.7, the throughput of a single syn-

chronization manager drops suddenly at certain numbers of cores. This is caused by

the hardware queue getting full. Each request is of 8B size. Each thread in the bench-

mark can have an outstanding monitor-exit request (non blocking) and an outstanding

monitor-enter request (blocking). As a result in the worst case scenario, each thread

has 16B in the synchronization manager’s hardware queue. Since the hardware queue

is of 4KiB size, in the worst case scenario, where the synchronization manager request

handling rate is much lower than the requests generation rate by the threads, it can

handle up to 256 threads. The measurements show, however, that we only manage to

fill the hardware queue and start getting NACKS after 365 threads. As the number of

cores increases further, we observe two more sudden drops, which we attribute to the

increased number of NACKs and network packages in the network.

In Figure 5.8 we present the results from varying the number of synchronization man-

agers in the same micro-benchmark when running with 504 threads. The results show

that the peak throughput –aggregated throughput of all the synchronization managers

in the system– is reached when using three synchronization managers. However, we

106

F. Zakkak 5.4. Evaluation

5
10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8

T
h
ro
u
g
h
p
u
t

(R
e
q
s
/1
0
K
c
y
c
le
s
)

Number of Synchronization Managers

Figure 5.8.: Throughput vs Number of Synchronization Managers

believe that this is an artifact of the slow interpreter that fails to generate requests at

a faster pace. Native measurements have shown that a number of 8 synchronization

managers is needed to handle 504 cores.

Local Monitors

Due to the lack of coherent-islands we implement local monitors per core instead of per

coherent island. This way a monitor may only be reused by several Java threads sched-

uled on the same core. Additionally, it is only possible to limit the outstanding monitor

acquire requests to one per core instead of one per coherent-island. Unfortunately, this

does not allow us to measure the impact of the proposed design on the network traffic

and the overall performance.

Impact of Queuing Requests

To evaluate the impact of queuing requests in the synchronization manager, instead of

replying with NACKs and retrying (see Section 4.2.2), we use a benchmark that spawns

multiple threads, that each tries to acquire and release amonitor 100 times. Tomaximize

contention all threads act on the same monitor and perform no other workload other

than the acquires and releases.

Figure 5.9 presents the total execution time in billions of clock cycles, when queuing is

enabled (blue bars), and when it is disabled (orange bars). We observe a maximum 3×

107

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

0
2
4
6
8

10
12
14
16
18

1 15 255 503

E
x
e
c
u
ti
o
n
ti
m
e

(B
ill
io
n
c
lo
c
k
c
y
c
le
s
)

Number of Java threads

with queueing
without queueing

Figure 5.9.: Queuing vs Retrying: Impact on Application’s Execution Time

speedup at 504 cores. We observe that the higher the contention, the higher the differ-

ence. At a low number of threads this happens because the synchronization manager

always finds a request to serve in its queue and can immediately process it and notify

the corresponding thread. At a high number of threads, in addition to the high availabil-

ity of requests, we reduce the network contention by reducing the messages.

Figure 5.10 presents the total throughput, as monitor enters per one thousand clock

cycles, measured at the synchronization manager for the same runs. We observe that

when queuing is enabled for runs with more than 15 threads, the synchronization man-

ager is able to handle 9 monitorenters per one million clock cycles. On the contrary

when queuing is disabled, the synchronizationmanager’s monitorenter handling rate

starts to decrease after 15 cores. This is a result of the additional network traffic, the con-

tention it creates, and the fact that the synchronization manager’s mailbox is constantly

full, resulting in the synchronization manager being mostly busy with sending NACKs.

Note that the synchronization manager’s throughput is much higher than 9 operations

per one million clock cycles, as shown in Figure 5.7. In this micro-benchmark however,

the throughput is bound by the rate at which a Java thread is able to acquire and release

a monitor, since all threads race for the same monitor. Our measurements show that a

synchronization manager spends about 400 clock cycles to handle a monitorenter

operation, and 600 clock cycles to handle a monitorexit operation under high con-

tention. This cost is lower under no contention, since the synchronization manager does

not perform queue operations.

108

F. Zakkak 5.4. Evaluation

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500

T
h
ro
u
g
h
p
u
t

(M
o
n
it
o
r
E
n
te
rs
/1
M

c
y
c
le
s
)

Number of Java threads

with queueing
without queueing

Figure 5.10.: Queuing vs Retrying: Impact on Synchronization Manager’s Throughput

5.4.4. Overall Scalability

To evaluate the overall scalability of DiSquawk we use the Crypt, SOR (Successive

Over-Relaxation), and Series benchmarks from the Java Grande [92] suite and the

Black-Scholes benchmark from the PARSEC suite [11], ported to java. Due to the lack

of garbage collection and the upper limit of 4 GiB heap we are unable to run reason-

able workloads with the rest of the Java Grande benchmarks as well as more realistic

workloads from other benchmark suites. These benchmarks require larger than 4 GiB

datasets to produce meaningful results on a large number of cores and some of them

also create objects with short lifespans, relying on garbage collection to reclaim their

memory.

For each benchmark we measure its performance on both DiSquawk, running on the

Formic-Cube, and HotSpot running on a 4-chip NUMA machine with 16 cores per chip,

totalling 64 cores. HotSpot is the current state-of-the-art Java implementation for shared

memory architectures. Since DiSquawk does not support JIT compilation, we disable

JIT in HotSpot (using the -Xint flag) as well. This allows us to better understand the

applications’ behavior on both architectures. Additionally, due to the large number of

cores, the distributed memory nature, and the slow CPU clock of Formic-Cube we ex-

amine weak scaling instead of strong scaling. Strong scaling requires all runs to act on

a large workload so that when we run with 512 threads there will be enough work for

all the cores, which results on long runs when using only a few threads. Weak scaling

on the other hand allows us to avoid such long runs by increasing the workload along

with the number of threads. Weak scaling also allows us to run our benchmarks on a

non-distributed Squawk instance on Formic-Cube to get a sequential baseline for our

measurements, since the workload for one thread can fit in thememory of a single board.

109

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

Since Formic-Cube is a prototype clocked at 10MHz, a direct comparison of the through-

put or the execution time on the two architectures is not possible, thus we compare

the scaling of the applications’ throughput instead of their absolute performance. To

achieve this we measure each application’s throughput when run with a different num-

ber of threads (one per core), and divide it by the throughput of the application when

run with a single thread on the corresponding architecture.

Throughput Scaling =
Throughput with N threads

Throughput with 1 thread

Especially for DiSquawk, we divide the throughput by the throughput of the application

when run on a non-distributed Squawk instance on Formic-Cube, without our mecha-

nisms for distributed execution. This way we avoid the overhead of our mechanisms

and provide a more clear view of the scaling factor. We further discuss the overheads

of our mechanisms in Section 5.4.5.

Black-Scholes and Series are embarrassingly parallel benchmarks. Each thread op-

erates on a different subset of data from an input set and creates a new set with the

corresponding results. The results are then accessed by the main thread for validation.

Figure 5.11 and Figure 5.12 present our evaluation results for Black-Scholes and Series

respectively. The number of Java threads, one per core, is placed on the x-axis, and

the throughput scale factor is placed on the y-axis. Both axes are in logarithmic scale

of base 2. Since we cannot run HotSpot on more than 64 cores, we only plot mea-

surements up to 64 threads for HotSpot. We observe that Black-Scholes when run on

HotSpot exhibits linear scaling up to 16 threads and starts to scale in a slower manner

on higher number of threads. On the other hand, when run on DiSquawk we observe

that it needs to run with more than 2 threads in order to hide the overhead of our mech-

anisms. However, when run with more than 2 threads it scales linearly with the number

of threads. For Series we observe that it achieves close to linear speedup on both ar-

chitectures, we attribute this to the embarrassingly parallel and compute intensive na-

ture of this benchmark. Since our mechanisms mostly concern memory management

and synchronization, in the case of Series the introduced overhead is low, allowing it to

scale linearly in DiSquawk.

Figure 5.13 and Figure 5.14 present our evaluation results for Crypt and SOR respec-

tively. Crypt comprises two embarrassingly parallel phases. In the first phase each

thread encrypts a subset of the input data and then waits on a barrier. When all threads

reach the barrier they proceed to decrypt each a subset of the encrypted data. The re-

sults are then compared to the original input for validation. SOR performs a number of

iterations where each thread acts on a different block of an array accessing the previous

and next neighboring blocks as well. As a result, each iteration depends on the neigh-

boring blocks. To ensure that the neighboring blocks are ready, SOR uses a volatile

counter for each thread. This counter reflects the iteration the corresponding thread is

on. Each thread updates the counter at the end of each iteration and accesses the two

counters of the neighboring threads.

110

F. Zakkak 5.4. Evaluation

0.25

1

4

16

64

256

1 2 4 8 16 32 64 128 256 504

T
h
ro
u
g
h
p
u
t
S
c
a
lin
g

Number of Java threads (1 per core)

DiSquawk
HotSpot
Linear

Figure 5.11.: Black-Scholes Scaling

0.25

1

4

16

64

256

1 2 4 8 16 32 64 128 256 504

T
h
ro
u
g
h
p
u
t
S
c
a
lin
g

Number of Java threads (1 per core)

DiSquawk
HotSpot
Linear

Figure 5.12.: Series Scaling

We observe that both benchmarks fail to scale until 4 threads. We attribute this behavior

to the memory intensive nature of Crypt and the high communication rate of SOR.

111

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

0.25

1

4

16

64

256

1 2 4 8 16 32 64 128 256 504

T
h
ro
u
g
h
p
u
t
S
c
a
lin
g

Number of Java threads (1 per core)

DiSquawk
HotSpot
Linear

Figure 5.13.: Crypt Scaling

0.25

1

4

16

64

256

1 2 4 8 16 32 64 128 256 504

T
h
ro
u
g
h
p
u
t
S
c
a
lin
g

Number of Java threads (1 per core)

DiSquawk
HotSpot
Linear

Figure 5.14.: SOR Scaling

5.4.5. Overhead

Measuring the added overhead of our mechanisms on the application’s runtime is not

trivial. To get an estimation of that overhead we run each application on a non-distributed

112

F. Zakkak 5.4. Evaluation

Squawk instance on Formic-Cube, without our mechanisms for distributed execution.

Then we compare the execution time of this run with that of a run on DiSquawk with a

single thread. The difference between the execution times of the two runs demonstrates

a part of the added overhead, by our mechanisms. Figure 5.15 presents the results of

our measurements on the four benchmarks, Black-Scholes, Series, Crypt, and SOR.

0

0.5

1

1.5

2

2.5

3

Black-Scholes Series Crypt SOR

E
x
e
c
u
ti
o
n
T
im
e
(N
o
rm

a
liz
e
d
)

Baseline
SC Overhead
SM Overhead

Figure 5.15.: DiSquawk Overheads

This approach however does not measure the total overhead, since it does not account

the overhead of caching data, it only accounts the overhead of checking if a memory

address is cacheable or not, and the overhead of communicating with a synchronization

manager at each synchronization action.

We group the overheads introduced by our mechanisms in categories and discuss each

separately.

Checks at pointer dereference

In software caching, to figure out whether a memory address is remote and needs to

be cached we need to perform a check at each object reference (pointer) dereference.

In DiSquawk we achieve this by shifting each object reference 26 bits right to get the

home ID of that reference. When the home ID is equal to the our nodes ID it means

that the corresponding object is local and does not need to be cached. However, we

still need to strip the home ID from the object reference to access it. As a result, in the

best case scenario where the object is in the local memory, we pay the overhead of one

shift, one branch, and one logical and operation for every object dereference.

113

Chapter 5. DiSquawk: 512 Cores, 512 Memories, 1 JVM F. Zakkak

Software cache lookups

In the case where the object resides in a remote memory we pay the additional overhead

of looking up the object in the software cache. This overhead might be non-constant

per lookup, depending on the number of the already cached data that happen to collide

in the hashtable we use as the cache directory.

Memory transfers

If a remote object is not found in the software cache we fetch it from a remote memory

and then insert it in our software cache. The overhead of these operations is also non-

constant, and depends on the size of the object and the number of the already cached

data that happen to collide in the hashtable we use as the cache directory. Further-

more, in the case where the software cache is full we also invalidate it. Note that the

memory transfer cost depends on the underlying architecture and cannot be reduced

by optimizing the software. The only way to reduce the overhead in execution time is

by prefetching data.

Synchronization

Finally, at synchronization points we pay the overhead of communicating with the syn-

chronization manager and in some cases the additional overhead of flushing or invali-

dating the software cache.

The overheads of the checks and the synchronization are reflected in Figure 5.15, but

the cache lookups andmemory transfer overheads cannot bemeasured accurately. Due

to the fine grained nature of the lookup and memory transfer operations, measuring

them introduces significant noise to the measurements.

To reduce the overheads and improve performance we suggest the use of JIT compi-

lation. Using JIT compilation we can update object references to their stripped coun-

terparts when local or to their address in the software cache when remote and cached.

This way hot spots in the application can avoid paying the overhead of checking, and

stripping or looking up an object reference multiple times. However we still need to pay

the cost of de-optimization when an object gets invalidated.

114

Chapter 6.

Distributed Java Calculus

In this Chapter we present a Java core calculus that we define along with its operational

semantics that models DiSquawk. We use this calculus and its operational semantics

to argue that it only generates well formed executions and thus it adheres to JDMM and

consequently to JMM. This way we also show that DiSquawk adheres to JDMM and

JMM, since the operational semantics of the calculus we define models it.

Parts of the work presented in this chapter have been published in the proceedings of

the 13th International Conference on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16) [34].

6.1. The Calculus

The calculus we define is a minimal core calculus for the Java language, which is based

on the Featherweight Java [43] variant introduced by Johnsen et al. [48]. This variant

omits inheritance, subtyping and type casts, and adds concurrency and explicit lock

support. In this thesis we extend it by replacing the explicit lock support with synchro-

nization operations, e.g., monitor-enter, join, etc. Similarly to Johnsen et al. [48], we also

omit Java inheritance, subtyping, and typecasting as they have been extensively studied

previously and are orthogonal to cache management. The resulting calculus, called

Distributed Java Calculus (DJC), is a minimal calculus that its operational semantics

gives us the power to argue about the correctness of cache and monitor management

in DiSquawk.

6.1.1. Syntax

The syntax of DJC is presented in Table 6.1. A Java program 𝐽 consists of a sequence

�⃗� of class definitions. A class is defined as class 𝐶(⃖⃖⃖⃖⃖⃖⃗𝑓 ∶ 𝜏){𝑒}{�⃗�} where 𝐶 is the class

name; ⃖⃖⃖⃖⃖⃖⃗𝑓 ∶ 𝜏 is the list of field declarations, where each 𝑓𝑖 is unique; 𝑒 is the body of the

class constructor; and �⃗� is a sequence of method definitions. The calculus types are

class names 𝐶, boolean scalar types Bool , scalar natural numbers Nat , and Unit for

115

Chapter 6. Distributed Java Calculus F. Zakkak

Table 6.1.: Abstract syntax of DJC

Program 𝐽 ⩴ �⃗�
Class Def. 𝐷 ⩴ class 𝐶(⃖⃖⃖⃖⃖⃖⃗𝑓 ∶ 𝜏){𝑒}{�⃗�}
Types 𝜏 ⩴ 𝐶 ∣ Bool ∣ Nat ∣ Unit
Methods 𝑀 ⩴ 𝑚(⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏){return 𝑒; } ∶ 𝜏
Expressions 𝑒 ⩴ 𝑥 ∣ new 𝐶(𝑒) ∣ 𝑒.𝑓 ∣ 𝑒.𝑓 ≔ 𝑒

∣ let 𝑥 ∶ 𝜏 = 𝑒 in 𝑒 ∣ if 𝑒 then 𝑒 else 𝑒 ∣ 𝑒.𝑚(𝑒)
∣ 𝑒.acquire ∣ 𝑒.release ∣ 𝑒.monitorenter ∣ 𝑒.monitorexit

Values 𝑣 ⩴ 𝑟 ∣ () ∣ true ∣ false ∣ 𝑛
Contexts E (•) ⩴ new 𝐶(𝑣, … , •, … , 𝑒) ∣ •.𝑓 ∣ 𝑒.𝑓 ≔ • ∣ •.𝑓 ≔ 𝑣

∣ let 𝑥 ∶ 𝜏 = • in 𝑒 ∣ if • then 𝑒 else 𝑒
∣ 𝑒.𝑚(𝑣, … , •, … , 𝑒) ∣ •.monitorenter ∣ •.monitorexit

Threads 𝑇 ⩴ 𝑐⟨𝑟, start⟩ ∣ 𝑐⟨𝑟, 𝑒⟩ ∣ (𝑇 ∥ 𝑇) ∣ 0
Object 𝑜 ⩴ ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣⟩ ∣ ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, started⟩ ∣ ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, spawned⟩

∣ ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, finished⟩ ∣ ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, interrupted⟩

Heap ℋ ≐ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑟 ↦ (𝑜, 𝑙)
Object Cache 𝒞 ≐ ⃖⃖⃖⃖⃖⃖⃖⃗𝑟 ↦ 𝑜
Write Buffer 𝒟 ≐ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑟.𝑓 ↦ 𝑣
Cache per Core 𝒞 ≐ ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑐 ↦ 𝒞
Buffer per Core 𝒟 ≐ ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑐 ↦ 𝒟
Lock State 𝑙 ⩴ 0 ∣ 𝑟(𝑛)
Transition Labels ℒ ⩴ 0 ∣ 𝑐 ↦ () ∣ 𝑐 ↦ 𝛼 ∣ ℒ; ℒ
Actions 𝛼 ≐ ⟨𝑟, 𝑘, 𝑓 , 𝑛⟩
Action Kinds 𝑘 ⩴ R ∣ W ∣ In ∣ Vr ∣ Vw ∣ L ∣ U ∣ St ∣ Fi

∣ Ir ∣ Ird ∣ Sp ∣ J ∣ Ex ∣ F ∣ B ∣ Iv ∣ M

the unit value (). A method is defined as 𝑚(⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏){return 𝑒; } ∶ 𝜏 where 𝑚 is the method’s

name; ⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏 is the set of formal arguments; 𝑒 is the method body; and 𝜏 is the return

type. To keep the calculus simple we do not support method overloading.

The syntax supports variables 𝑥; creation of class instances as new 𝐶(𝑒); field accesses
as 𝑒.𝑓, where 𝑓 is a unique field identifier; field updates as 𝑟.𝑓 ≔ 𝑒; and sequential

composition using the let-construct as let 𝑥 ∶ 𝜏 = 𝑒 in 𝑒. Note that the evaluation of 𝑒
may have side-effects. The syntax also supports conditional expressions in the form of

if 𝑒 then 𝑒 else 𝑒; method calls as 𝑒.𝑚(𝑒), where 𝑚 is the method name.

Additionally, the syntax supports the monitor enter and exit actions through the expres-

sions 𝑒.monitorenter and 𝑒.monitorexit, respectively. Note that volatile accesses do not

have separate bytecodes in Java, they appear as normal memory accesses that the

116

F. Zakkak 6.1. The Calculus

JVM checks at runtime whether they are volatile or not, thus we do not provide special

expressions for volatile accesses.

Values 𝑣 are references to objects 𝑟, the unit value (), boolean constants true and false
and scalar numerical constants 𝑛, abstracting over all other Java scalar types.

Contexts are used to show the evaluation sequence of the expressions. In each ex-

pression in 𝐸(•) the • is evaluated first.

To argue about threads at runtime we extend DJC’s syntax with run-time threads. A

thread is defined as 𝑐⟨𝑟, start⟩ or 𝑐⟨𝑟, 𝑒⟩, where 𝑐 is the unique identification of the core

that executes it; 𝑟 is the corresponding instance of the Thread class; start is the thread
start action, that signals the start of its execution and is not to be confused with the

start() method of the Thread class; and 𝑒 is the thread’s body. Threads can be

composed in parallel pairs using the associative and commutative binary operator ∥.
The empty thread is marked with 0 and is the neutral element of ∥.

An object in the runtime syntax is represented as ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣⟩ or ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, state⟩. The
first form is used for every object in the memory, while the second is only used for

thread objects that their start() method has been invoked, and state can be one of

spawned, started, finished, and interrupted. Each object contains the name of its class, 𝐶,
and a map of field names 𝑓 to values 𝑣. Spawned is a thread that its start() method

has been invoked. Started is a thread that its run() method has been invoked. Finished

is a thread that has reached completion. Interrupted is a thread that its interrupt()

method has been invoked.

The memory of the system is split in the Heap ℋ, the object cache 𝒞, the write buffer 𝒟,

the object cache per core 𝒞, and the write buffer per core 𝒟. The heap is a map from

references 𝑟 to objects 𝑜 and their monitor 𝑙. The object cache is a map from references

𝑟 to objects 𝑜. The write buffer is a map from object fields 𝑟.𝑓 to values 𝑣. The object

cache per core is a map from core ids 𝑐 to object caches 𝒞. Similarly, the write buffer

per core is a map from core ids 𝑐 to write buffers 𝒟.

To model mutual exclusion we add a lock state to the runtime syntax. A lock 𝑙 may be

free, i.e., 0, or acquired by some thread 𝑟, 𝑛 times.

In DJC’s operational semantics we also use a Labelled Transition System (LTS) [75,

§2.2] to associate steps with the corresponding cores performing the step and the cor-

responding JMM/JDMM actions. We use
𝑐↦𝛼
−−−→ to show that the step is performed by

core 𝑐 and performs the JMM/JDMM action 𝛼. For steps that do not correspond to a

JMM/JDMM action we use
𝑐↦()
−−−→. We use this information in Appendix B to argue about

the adherence of the operational semantics to JDMM.

JMM/JDMM actions are expressed as tuples ⟨𝑟, 𝑘, 𝑓 , 𝑛⟩, where 𝑟 is the reference to the

object the action acts on, 𝑘 is the action kind (see Table 3.1), 𝑓 is the field the action

acts on, and 𝑛 is a unique ID for the action.

117

Chapter 6. Distributed Java Calculus F. Zakkak

6.1.2. Operational Semantics

The operational semantics of DJC are based on those introduced by Johnsen et al.

[48]. In this work we introduce new rules for fetch, write-back, invalidate, volatile-read,

volatile-write, start, finish, join, interrupt, interrupt detection, and migrate operations.

Note that we do not include java.util.concurrent, a Java library introducing more

synchronization mechanisms, in our formalization since its interference with JMM is not

yet fully defined.

Table 6.2.: Definition of Notation

Notation Definition

𝑟 Reference value

𝑚 Method identifier

𝑓 Field identifier

𝑐 Core identifier

dom (𝑋) Returns the keys of the map 𝑋
rng (𝑋) Returns the values of the map 𝑋

�⃗�[𝑋′
𝑖 /𝑋𝑖] Replaces 𝑋𝑖 with 𝑋′

𝑖 in 𝑋
�⃗� ↓ �⃗� The subset of map bindings in 𝑋 with keys in �⃗�

volatile (𝑟.𝑓) Returns true if 𝑟.𝑓 is volatile

In Table 6.2 we present the summary of the notations, along with their definitions, that

we use in the operational semantics of DJC. We discuss these definitions in more detail,

where they appear, as we present the operational semantics. To improve readability, we

split the operational semantics in four categories; the fundamental operational seman-

tics, regarding the core language; the synchronization operational semantics, regarding

volatile accesses, monitor handling, join, and interrupts; the operational semantics for

implicit operations performed by the JVM; and the global operational semantics, regard-

ing parallel execution.

The fundamental operational semantics of DJC, are presented in Figure 6.1. Following

the notation of Johnsen et al., the local configurations are of the form ℋ ; 𝒞 ; 𝒟 ⊢ 𝑒. Note
that 𝑐 and 𝑟𝑡 in 𝑐⟨𝑟𝑡, 𝑒⟩, although present in every rule, are not involved in any of the rules
in Figure 6.3 and Figure 6.4. We only use them to argue about the global operational

semantics in Figure 6.5. This syntax allows us to argue about which core is executing

a thread and what is the corresponding object of this thread.

The CtxStep rule describes the evaluation of an expression in a context. The IfTrue and

IfFalse rules handle conditional expressions in the standard manner. Structural rule Let

handles substitution in the standard manner.

118

F. Zakkak 6.1. The Calculus

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[CtxStep]
ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

ℒ
−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝐸(𝑒)⟩
ℒ
−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝐸(𝑒′)⟩

[IfTrue] ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, if true then 𝑒1 else 𝑒2⟩
𝑐↦()
−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒1⟩

[IfFalse] ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, if false then 𝑒1 else 𝑒2⟩
𝑐↦()
−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒2⟩

[Let] ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, let 𝑥 ∶ 𝜏 = 𝑣 in 𝑒⟩
𝑐↦()
−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒[𝑣/𝑥]⟩

[Call]
ℋ (𝑟) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣′⟩ 𝑚(⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏){return 𝑒; } ∈ 𝐶

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑚(𝑣)⟩
𝑐↦()
−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒[𝑣/�⃗�][𝑟/this]⟩

[Field]
𝑟 ∈ dom (ℋ) ¬volatile (𝑟.𝑓) 𝒞 (𝑟.𝑓) = 𝑣 𝑟.𝑓 ∉ dom (𝒟)

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓⟩
𝑐↦⟨𝑟𝑡,R,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑣⟩

[FieldDirty]
𝑟 ∈ dom (ℋ) ¬volatile (𝑟.𝑓) 𝒟(𝑟.𝑓) = 𝑣

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓⟩
𝑐↦⟨𝑟𝑡,R,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑣⟩

[Assign]
𝑟 ∈ dom (ℋ) ¬volatile (𝑟.𝑓) 𝒟 ′ = 𝒟[𝑟.𝑓 ↦ 𝑣]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓 ≔ 𝑣⟩
𝑐↦⟨𝑟𝑡,W ,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝑣⟩

[New]
𝑟 − fresh ℋ (𝑟) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 0⟩ class 𝐶(⃖⃖⃖⃖⃖⃖⃗𝑓 ∶ 𝜏){𝑒}{�⃗�} ∈ 𝐽

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, new 𝐶(𝑣)⟩
𝑐↦()
−−−→

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, let _ ∶ Unit = 𝑒[𝑣/𝑓][𝑟/this] in 𝑟⟩

Figure 6.1.: Semantics of Local Operations

Structural rule Call handles method calls. We use 𝑟.𝑚(𝑣) for invocations with arguments

𝑣 of the method with name 𝑚 of the object referenced by 𝑟. To determine the body

of the method we use 𝑚(⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏){return 𝑒; }, where ⃖⃖⃖⃖⃖⃖⃗𝑥 ∶ 𝜏 are the formal arguments of the

method and 𝑒 is the method body. We evaluate method calls by substituting the formal

arguments with the given ones and this with 𝑟 in the method body. In Java, this is

used to refer to the object owning the method, and it is usually passed, in an implicit

manner, as the first argument of each non-static method.

119

Chapter 6. Distributed Java Calculus F. Zakkak

In our implementation all memory accesses first go through the write buffer and if they

miss proceed to the object cache , thus, to access a field, we need it to be present

either in the write buffer or the object cache. To reason about such accesses we define

two structural rules, Field and FieldDirty. Structural rule Field handles non-volatile field

accesses, when the field is cached in the object cache, while FieldDirty handles non-

volatile field accesses, when the field is cached in the write buffer.

In Field the first premise requires that the object, that the field being accessed belongs

to, is in the heap (has been allocated and initialized). The second premise requires the

access to not refer to a volatile field. To achieve this we use the function volatile (𝑟.𝑓)
which returns true if the field 𝑓 is volatile in the object referenced by 𝑟 and false

otherwise. This function models the distinction, performed internally by the JVM, of

volatile fields from normal fields. The third premise requires that the core performing the

read has a local copy of the field in its object cache, and the cached value is 𝑣. The last
premise requires that the field is not cached in the write buffer. Considering ℋ, 𝒞, and
𝒟 as maps 𝑋, we use 𝑋(𝑘) to get the value of the cached object or field with key 𝑘. We

also use 𝒞 (𝑟.𝑓) = 𝑣 as a shorter version of 𝒞 (𝑟) = ⟨𝐶, 𝑓 ′
1 ↦ 𝑣′

1, … , 𝑓 ↦ 𝑣, … , 𝑓 ′
𝑛 ↦ 𝑣′

𝑛⟩
to show that 𝑓 maps to 𝑣 in the object returned by 𝒞 (𝑟). Additionally, we use dom (𝑋) to
get all the map keys, i.e., references in the case of ℋ and 𝒞 or field names in the case

of 𝒟.

In a similar manner FieldDirty handles field accesses of fields that are cached in the

write buffer. The only difference from Field is that we require 𝑓 to be cached in the write

buffer and get its value from there instead of the object cache.

Structural rule Assign handles non-volatile field writes, which also go through the write

buffer. As a result, writes change the contents of the write buffer instead of the heap, as

required by the last two premises. Given a map 𝑋, 𝑋′ = 𝑋 ⧵ 𝑘 is used to show that 𝑋′

contains the same mappings as 𝑋 except a mapping for key 𝑘, thus 𝑘 ∉ dom (𝑋′) and

𝑋′ ⊆ 𝑋. Note that we use ⊆ instead of ⊂, since 𝑘 might not be in the map in the first

place.

Structural rule New returns a fresh reference to an object ⟨𝐶, 𝑣⟩, and adds it to ℋ. Simi-

larly to Johnsen et al., we use 𝐶 (𝑣) for instances of class 𝐶 with field values 𝑣, i.e., field
𝑓𝑖 contains the value 𝑣𝑖. Note that according to JMM “conceptually every object is cre-

ated at the start of the program” [72, §4.3]. That said, in DJC we assume that the object

is already present in the memory, with its fields initialized to the default value, and that

New just returns a reference to it. We use 𝑟 − fresh to show that there is no other refer-

ence to that object already.

In Figure 6.2 we present the operational semantics for implicit operations. These are op-

erations performed implicitly by the virtual machine and do not map to language expres-

sions. Structural rules Fetch, WriteBack, and Invalidate handle fetching, write-back,

and invalidation of a cached object, respectively. Fetching an object requires that it ex-

ists in the heap (first and second premise). A fetch results in the addition of the object

referenced by 𝑟 in the object cache 𝒞. Writing back a field 𝑟.𝑓 requires that the object

120

F. Zakkak 6.1. The Calculus

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[Fetch]
ℋ (𝑟) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣⟩ 𝒞 ′ = 𝒞 [𝑟 ↦ ℋ (𝑟)]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,F ,𝑟,𝑢⟩
−−−−−−−−→ ℋ ; 𝒞 ′; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[WriteBack]

𝑟 ∈ dom (ℋ) 𝑟 ∈ dom (𝒞) ¬volatile (𝑟.𝑓) 𝑟.𝑓 ∈ dom (𝒟)
ℋ ′ = ℋ [𝑟.𝑓 ↦ 𝒟(𝑟.𝑓)] 𝒞 ′ = 𝒞 [𝑟.𝑓 ↦ 𝒟(𝑟.𝑓)] 𝒟 ′ = 𝒟 ⧵ 𝑟.𝑓

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,B ,𝑟,𝑢⟩
−−−−−−−−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[Invalidate]
𝑟 ∈ dom (𝒞) 𝒞 ′ = 𝒞 ⧵ 𝑟

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,Iv ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ; 𝒞 ′; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[Start]

𝒞 = ∅
𝒟 = ∅ ℋ (𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, spawned⟩ ℋ ′(𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, started⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, start⟩
𝑐↦⟨𝑟𝑡,St ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟𝑡.𝑟𝑢𝑛()⟩

[Finish]
𝒟 = ∅ ℋ (𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, started⟩ ℋ ′(𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, finished⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩
𝑐↦⟨𝑟𝑡,Fi ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

Figure 6.2.: Operational Semantics for Implicit Operations

referenced by 𝑟 is present in the heap ℋ and the object cache 𝒞, 𝑟.𝑓 is not volatile, and

there is a dirty copy of it in the write buffer 𝒟. Writing-back a field results in the update

of its value both in the heap ℋ and the object cache 𝒞. Invalidating an object’s cached

copy requires that it is cached. Note that this does not force that object’s fields to not

be cached in the write buffer. An invalidation results in the removal of the object refer-

enced by 𝑟 from the object cache, 𝒞, of the core executing the invalidation. Structural

rule Start enforces the evaluation of the thread start action before any other action in

the thread and —treating thread start as an acquire action— requires the object cache

and the write buffer to be empty on the running core.

Structural rule Finish handles the completion of a thread. Note that a thread reaches

completion when its thread body is equal to the unit value (). As a release action requires
the write buffer to be empty, and changes the state of the thread to allow joiners to

proceed.

In Figure 6.3 we present the operational semantics for volatile accesses.

121

Chapter 6. Distributed Java Calculus F. Zakkak

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[VolatileReadL]

𝑟 ∈ dom (ℋ)
volatile (𝑟.𝑓) ℋ (𝑟.𝑓 .𝑙) = 0 ℋ ′ = ℋ [𝑟.𝑓 .𝑙 ↦ 𝑟𝑡]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓⟩
𝑐↦()
−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓⟩

[VolatileRead]

𝑟 ∈ dom (ℋ) ℋ (𝑟.𝑓 .𝑙) = 𝑟𝑡
𝒞 = ∅ 𝒟 = ∅ ℋ ′ = ℋ [𝑟.𝑓 .𝑙 ↦ 0] ℋ (𝑟.𝑓) = 𝑣

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓⟩
𝑐↦⟨𝑟𝑡,Vr ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑣⟩

[VolatileWriteL]

𝑟 ∈ dom (ℋ)
volatile (𝑟.𝑓) ℋ (𝑟.𝑓 .𝑙) = 0 ℋ ′ = ℋ [𝑟.𝑓 .𝑙 ↦ 𝑟𝑡]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓 ≔ 𝑣⟩
𝑐↦()
−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓 ≔ 𝑣⟩

[VolatileWrite]

𝑟 ∈ dom (ℋ)
ℋ (𝑟.𝑓 .𝑙) = 𝑟𝑡 𝒟 = ∅ ℋ ′ = ℋ [𝑟.𝑓 ↦ 𝑣][𝑟.𝑓 .𝑙 ↦ 0]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.𝑓 ≔ 𝑣⟩
𝑐↦⟨𝑟𝑡,Vw ,𝑟,𝑢⟩
−−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑣⟩

Figure 6.3.: Semantics of Volatile Accesses

Structural rules VolatileReadL and VolatileRead handle volatile reads. Structural rules

VolatileWriteL and VolatileWrite handle volatile writes. Note that the combination of

VolatileReadL and VolatileRead results in a single volatile-read. The same holds for

VolatileWriteL, VolatileWrite and the volatile-write action. Specifically, for each volatile

field 𝑟.𝑓 we assume a synthetic lock 𝑟.𝑓 .𝑙. This lock is used to force a total ordering

on the accesses to this variable and guarantee atomicity to the corresponding hardware

memory accesses, as we describe in Section 5.3.5. When 𝑟.𝑓 .𝑙 is 0, it means the volatile

variable 𝑟.𝑓 is not being accessed by another thread. Assigning the thread 𝑟𝑡 to 𝑟.𝑓 .𝑙
we essentially block other threads from accessing this volatile variable. Additionally,

volatile accesses are exceptions to the rule that all accesses go through the cache.

Since volatile reads are acquire actions and volatile writes are release actions, before

volatile writes, any dirty data in the corresponding core’s cache must be written back

and before volatile reads, the corresponding core’s cache must be invalidated. Note

that we use ∅ for empty maps.

In Figure 6.4 we present the synchronization operational semantics. That is, rules about

monitor handling, join, and interrupts.

Structural rulesMonitorEnter and NestedMonitorEnter handle monitor acquisition, and

MonitorExit and NestedMonitorExit handle monitor release. In these rules we use 𝑟.𝑙

122

F. Zakkak 6.1. The Calculus

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

[MonitorEnter]

𝑟 ∈ dom (ℋ)
𝒞 = ∅ 𝒟 = ∅ ℋ (𝑟) = (𝑜, 0) ℋ ′ = ℋ [𝑟 ↦ (𝑜, 𝑟𝑡(1))]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.monitorenter⟩
𝑐↦⟨𝑟𝑡,L,𝑟,𝑢⟩
−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[NestedMonitorEnter]
𝑟 ∈ dom (ℋ) ℋ (𝑟) = (𝑜, 𝑟𝑡(𝑛)) ℋ ′ = ℋ [𝑟 ↦ (𝑜, 𝑟𝑡(𝑛 + 1))]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.monitorenter⟩
𝑐↦⟨𝑟𝑡,L,𝑟,𝑢⟩
−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[MonitorExit]
𝑟 ∈ dom (ℋ) 𝒟 = ∅ ℋ (𝑟) = (𝑜, 𝑟𝑡(1)) ℋ ′ = ℋ [𝑟 ↦ (𝑜, 0)]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.monitorexit⟩
𝑐↦⟨𝑟𝑡,U ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[NestedMonitorExit]
𝑟 ∈ dom (ℋ) ℋ (𝑟) = (𝑜, 𝑟𝑡(𝑛 + 2)) ℋ ′ = ℋ [𝑟 ↦ (𝑜, 𝑟𝑡(𝑛 + 1))]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟.monitorexit⟩
𝑐↦⟨𝑟𝑡,U ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[Join]
𝒞 = ∅ 𝒟 = ∅ ℋ (𝑟′

𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, finished⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟′
𝑡 .join()⟩

𝑐↦⟨𝑟𝑡,J ,𝑟,𝑢⟩
−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[Interrupt]
𝒟 = ∅ ℋ (𝑟′

𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, started⟩ ℋ ′(𝑟′
𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, interrupted⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟′
𝑡 .interrupt()⟩

𝑐↦⟨𝑟𝑡,Ir ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[InterruptedT]
𝒞 = ∅ 𝒟 = ∅ ℋ (𝑟′

𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, interrupted⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟′
𝑡 .interrupted()⟩

𝑐↦⟨𝑟𝑡,Ird ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

[InterruptedF]
state ≠ interrupted ℋ (𝑟′

𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, state⟩

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟′
𝑡 .interrupted()⟩

𝑐↦()
−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩

Figure 6.4.: Semantics of Synchornization Operations

—not to be confused with the synthetic lock 𝑟.𝑓 .𝑙 of volatile variables— to represent the

implicit monitor associated with the object with identity 𝑟. Our monitor handling is similar

to the lock handling introduced by Johnsen et al. [48]. The notation 𝐻(𝑟.𝑙) = 0 dictates

that the correspondingmonitor is not acquired by any thread in the system. 𝐻(𝑟.𝑙) = 𝑟𝑡(𝑛)
dictates that the corresponding monitor has been acquired 𝑛 times by the thread 𝑟𝑡.

123

Chapter 6. Distributed Java Calculus F. Zakkak

Structural ruleMonitorEnter requires that a monitor must be free before its acquisition.

Structural rule NestedMonitorEnter requires that a monitor is already owned by some

thread before it gets re-entered by that same thread. Structural rules MonitorExit and

NestedMonitorExit ensure that a monitor is released only by its owner and the same

number of times it was previously acquired.

Nested Monitor Acquisition: In the case of nested monitor acquisition we can avoid

invalidating the object caches and writing-back data at nesting monitor release. By def-

inition, nested acquisition of monitors requires that the monitor is owned by the same

thread at any nesting level. Under that assumption, any concurrent actions that oper-

ate on the cached data used in the critical section would be the result of a data-race,

meaning that the program is not DRF. In that case, it is not necessary for any of the cor-

responding dirty data to become visible, to the threads performing the racy accesses, at

nested monitor releases. Note that racy accesses are not guaranteed to see the latest

write if the thread executing them did not synchronize-with an action that happens-after

that write. Similarly, since the monitor is already owned by the current thread, there

is no need to invalidate its core’s cache in order to get the latest values, since those

values are the results of some data-race. As a result, rules NestedMonitorEnter and

NestedMonitorExit do not need any special premises regarding object caches and write

buffers.

Structural rule Join handles invocations to the join() method of a thread. Its first two

premises require that the object cache and the write buffer are empty, since join is an

acquire action. The third premise requires the state of the thread object to be finished,
modeling the way a join blocks on the state of a thread in the JVM implementation.

Structural rule Interrupt handles invocations to the interrupt() method of a thread.

Its first premise requires that the write buffer is empty, since interrupt is a release ac-

tion. The second and third premises require the state of the thread object to be started
before the interrupt and started after it, modeling the way interrupts are implemented by

changing the thread’s state in the JVM implementation or setting a hardware register in

the case of using hardware interrupts.

Structural rules InterruptedT and InterruptedF handle Thread.interrupted() in-

vocations. InterruptedT handles cases where the thread is interrupted. Its first two

premises require that the object cache and write buffer are empty, since interrupt detec-

tion is an acquire action. The third premise requires the state of the thread object to be

interrupted.

𝑟𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑𝑓 handles cases where the thread is not interrupted. Its premises require

the state of the thread object to not be interrupted, in such cases the invocation is not a

synchronization action so there is no need for invalidating the object cache or the write

buffer.

124

F. Zakkak 6.1. The Calculus

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇

[Lift]

𝒞𝑐 = 𝒞 (𝑐) 𝒟𝑐 = 𝒟(𝑐) 𝒞 ′
𝑐 = 𝒞 ′(𝑐) 𝒟 ′

𝑐 = 𝒟 ′(𝑐)
ℋ ; 𝒞𝑐; 𝒟𝑐 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

ℒ
−→ ℋ ′; 𝒞 ′

𝑐 ; 𝒟 ′
𝑐 ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

𝒞 ′ = 𝒞 [𝑐 ↦ 𝒞 ′
𝑐] 𝒟 ′ = 𝒟[𝑐 ↦ 𝒟 ′

𝑐]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
ℒ
−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

[Spawn]

ℋ (𝑟𝑡′) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣⟩ ℋ ′(𝑟𝑡′) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, spawned⟩
run(){return 𝑒; } ∈ 𝐶 𝒟(𝑐) = ∅ 𝑐′ ∈ Cids

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑟𝑡′.start()⟩
𝑐↦⟨𝑟𝑡,Sp,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, ()⟩ ∥ 𝑐′⟨𝑟𝑡′, start⟩

[Migrate]
𝑐′ ∈ Cids 𝑐 ≠ 𝑐′ 𝒟(𝑐) = ∅ 𝒟(𝑐′) = ∅ 𝒞 (𝑐′) = ∅

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,M ,𝑟,𝑢⟩
−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐′⟨𝑟𝑡, 𝑒⟩

[Blocked]

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇1
0
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇1

[ParG]

dom (ℒ1) ∩ dom (ℒ2) = ∅
𝒞1 = 𝒞 ↓ dom (ℒ1) 𝒞2 = 𝒞 ↓ dom (ℒ2) 𝒞3 = 𝒞 ⧵ (𝒞1 ∪ 𝒞2)

𝒟1 = 𝒟 ↓ dom (ℒ1) 𝒟2 = 𝒟 ↓ dom (ℒ2) 𝒟3 = 𝒟 ⧵ (𝒟1 ∪ 𝒟2)

ℋ ; 𝒞1; 𝒟 ⊢ 𝑇1
ℒ1−−→ ℋ ′; 𝒞 ′

1 ; 𝒟 ′
1 ⊢ 𝑇 ′

1 ℋ ; 𝒞2; 𝒟 ⊢ 𝑇2
ℒ2−−→ ℋ ; 𝒞 ′

2 ; 𝒟 ′
2 ⊢ 𝑇 ′

2
𝒞 ′ = 𝒞 ′

1 ∪ 𝒞 ′
2 ∪ 𝒞3 𝒟 ′ = 𝒟 ′

1 ∪ 𝒟 ′
2 ∪ 𝒟3

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇1 ∥ 𝑇2
ℒ1;ℒ2−−−−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑇 ′

1 ∥ 𝑇 ′
2

Figure 6.5.: Global Operational Semantics

In Figure 6.5 we present the global operational semantics of DJC. Similarly to the local

configurations, the global configurations are of the form ℋ ; 𝒞 ; 𝒟 ⊢ 𝑒, where 𝒞 and 𝒟
are all the system’s object caches and write buffers respectively, while 𝒞 (𝑐) and 𝒟(𝑐)
are the object cache and write buffer of core 𝑐, respectively. Note that the heap is the

same in both global and local configurations since it is shared between all cores.

Structural rule Lift lifts local reduction steps to the global level. We use 𝒞 [𝑐 ↦ 𝒞 ′
𝑐] and

𝒟[𝑐 ↦ 𝒟 ′
𝑐] to show that the state of 𝒞 (𝑐) and 𝒟(𝑐) in the system is replaced by 𝒞 ′

𝑐 and

𝒟 ′
𝑐 , respectively.

Structural rule Spawn handles thread spawns (i.e., Thread.start() calls). For every

spawn —which is also a release action— we require that all dirty data are written back.

125

Chapter 6. Distributed Java Calculus F. Zakkak

Then the JVM picks one of the available cores, marked as 𝑐′ and schedules thread 𝑣′

to it. This is represented by introducing 𝑐′⟨𝑟′
𝑡 , start⟩ in parallel to the previously running

𝑐⟨𝑟𝑡, 𝑟′
𝑡 .start()⟩. Note that Spawn changes the state of the thread to spawned to mark that

this thread has been spawned and forbid re-spawns of it.

Structural ruleMigrate handles the Java thread migration to another core by the sched-

uler. It picks one of the available cores, marked as 𝑐′ and replaces 𝑐 with it, representing
that thread 𝑟 will continue its execution on core 𝑐 instead of 𝑐′.

Structural rule Blocked is essentially a no-op that allows threads to block and not step

in every transitions in an execution trace, e.g., a thread joining on another thread that is

still running.

In DJC, two (or more) Java threads can step concurrently through the ParG rule. Each

thread may change its core’s object cache and write buffer state and thus affect 𝒞 and

𝒟. Since the object caches and write buffers are disjoint for each core, the resulting

global state of object caches and write buffers after a concurrent step is the union of the

changed object buffers and write buffers by each set of cores that step in the parallel

transition and those that where left unchanged by both. To get the object caches and

write buffers that a set of cores 𝑐 changes we use 𝒞 ↓ 𝑐 (projection). Note that the

first premise of ParG required the two sets of cores that perform a step in the parallel

transition to be disjoint. This is to model that each core is running a single thread and

performs a single step each time. Additionally, inspecting its eighth and ninth premise

it only allows a single set of threads to modify the heap. This limitation partially models

the hardware memory bus and how it orders memory transfers. We allow only one write

per step to the heap, this way we allow parallelism but not concurrent writes to the heap.

To improve this, one can slice the heap, then different synchronization managers may

handle different slices of the heap and increase parallelism.

6.2. Proof Sketch

This section briefly describes the proof sketch of DJC’s adherence to the JDMM. For the

detailed proof sketch please refer to Appendix A and Appendix B. To improve readability

we use 𝑆 as an abbreviation for a global configuration, ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇. Intuitively, the

correctness property can be expressed as:

Theorem 1. DJC’s operational semantics generates only well-formed execution traces.

To prove Theorem 1, we show by induction that DJC’s operational semantics satisfies

every well-formedness rule. That is, given any well formed execution trace 𝑆 →∗ 𝑆′

where →∗ denotes a sequence of steps, i.e., 𝑆 →∗ 𝑆′ ≡ 𝑆
ℒ1−−→ 𝑆1

ℒ2−−→ 𝑆2 … 𝑆𝑛
ℒ𝑛−−→ 𝑆′,

we show that the trace after taking one more step, i.e., 𝑆 →∗ 𝑆𝑛
ℒ𝑛+1−−−→ 𝑆𝑛+1, is well-

formed as well.

126

F. Zakkak 6.2. Proof Sketch

This amounts to a preservation proof for each rule. It is trivial to show that structural rules

with conclusions that do not affect the memory state and do not regard synchronization

actions preserve the well-formedness of the execution. For the rest, we argue about

their effects on the execution state. Since DJC’s operational semantics is tailored after

JDMM’s well-formedness rules, for most inference rules, inspecting their premises and

conclusions is enough to show that a well-formedness rule is preserved.

As DJC models DiSquawk executions, we claim that DiSquawk executions adhere to

the JDMM, and consequently to the JMM.

127

Chapter 7.

Related work

7.1. Memory Models

To the best of our knowledge JDMM is the first formalization of the JMM for non-cache-

coherent and distributedmemories. JDMM is a pure extension of the JMM, whichmeans

that all properties of the JMM are also properties of JDMM and all valid JMM reorderings

are also valid JDMM reorderings.

Hoefler et al. [38] follow a similar approach to ours in the definition of the semi-formal

semantics of the MPI remote memory access (RMA). They use the JMM notation to

argue about the ordering of actions in an MPI execution, and algebraic formalization

to provide consistency guarantees to the MPI-RMA users. The MPI-RMA specification

relates to our work in that it targets similar architectures. Hoefler et al. work shows when

MPI users should use synchronization or communication primitives provided by MPI-

RMA to ensure data consistency as needed by their program. Similarly, in JDMM we

show when JVM implementers should perform explicit memory transfers to ensure that

their JVM adheres to JMM. The main difference between the two works is that Hoefler

et al. define the semantics of an API targeting non-coherent memory architectures and

how it should be used to produce valid programs, while our work defines how data need

to be explicitly transferred by the JVM so that executions of Java programs on that JVM

will adhere to JMM. Combined together the formalization of JDMM and MPI-RMA can

be used to argue about the implementation of a JVM relying on MPI-RMA to perform

the data transfers, instead of the hardware primitives.

Regarding the formalization of memory models through a language operational seman-

tics, previous work describes the memory semantics for shared memory multicore pro-

cessor architectures, such as Power [69], x86 [79, 85], and ARM [2] processors, with-

out focusing on a specific language semantics or memory model. Sarkar et al. [84] first

combined the semantics of an architecture with the memory model definition of the C++

language, focusing on its execution on shared-memory Power processors. Pratikakis et

al. [82] similarly present operational semantics for a specialized task-parallel program-

ming model designed to target distributed-memory architectures. Our work differs from

129

Chapter 7. Related work F. Zakkak

the aforementioned in that it is targeting distributed or non-cache-coherent memory ar-

chitectures.

Boudol and Petri [18] define a relaxedmemory model using an operational semantics for

the Core ML language (without typing). Their work takes into account write buffers that

must become empty before a lock release. That is, they treat lock releases as memory

barriers. Although the handling of write buffers is similar to handling caches regarding

the write backs, the fetching and invalidation handling part is not covered by their work.

Additionally, Boudol and Petri only consider lock releases as synchronization points,

while in the Java language, according to the JMM, there are multiple synchronization

points.

Joshi and Prasad [49], based on Boudol’s and Petri’s work, define an operational se-

mantics that accounts for caches. Their work fills the gap about update and invalidation

cache operations, left from Boudol’s and Petri’s work. In their work they use a simple

imperative language, claiming it has greater applicability. Unfortunately, this approach

further abstracts away details regarding the correct implementation of a specific pro-

gramming language’s memory model. In our work we focus on the Java language and

provide all the needed details for the implementation of its memory model. Furthermore,

both of the above works define operational semantics for generic relaxed memory mod-

els. We believe that defining the operational semantics for a specific memory model, in

this case the JMM, is a different task that builds on top of existing work.

Demange et al. [27] present the operational semantics of BMM, a redefinition of JMM

for the TSO memory model. BMM is similar to this work in that it aims to bring the Java

Memory Model definition closer to the hardware details. BMM, however, focuses on

buffers instead of caches and assumes the TSO memory model, which is not present

in the architectures at hand.

Jagadeesan et al. [45] also describe an operational semantics for the Java Memory

Model. This work, however, does not account for caches or buffers. They abstract

away the hardware details and consider reads and writes to become actions that float

into the evaluation context. This approach does not explicitly define when and where

writes should be eventually committed to satisfy the JMM. In our approach we explicitly

define where data get stored (even temporarily) after any evaluation step. We thus

consider our approach to be closer to the implementation.

Cenciarelli et al. [21] use a combination of operational, denotational, and axiomatic se-

mantics to define JMM. In their work they show that all their generated executions ad-

here to JMM, but similarly to Jagadeesan et al. [45] they do not account for the memory

hierarchy.

DJC’s definition is based on the concurrent object-oriented calculus definition introduced

by Johnsen et al. [48]. The way DJC handles monitors is inspired by the way Johnsen

et al. handle re-entrant locks in their calculus. Johnsen et al. focus on the prevention

of lock errors through a static type and effect system. DJC aims to prevent false cache

130

F. Zakkak 7.2. Software Caching

management in JVM implementations targeting architectures with non-cache-coherent

memories.

7.2. Software Caching

Lee et al. [60] propose the centralized release consistency (CRC)model where the PPE

is responsible for handling the pages and the locks to ensure memory coherence. Such

centralized scenarios are not expected to scale with the number of cores. To tackle this

issue Lee et al. [59] propose the hierarchical centralized release consistency (HCRC).

HCREC is essentially an extension of CRC, where each page is assigned to a system

node and in each system node there is one processing element responsible for handling

the pages and the locks to ensure memory coherence.

Balart et al. [9] present a compiler-assisted software cache implementation that allows

for outstanding DMA transfers of write-back and fetches, in an effort to overlap commu-

nication with computation. The cache operates on cache-line granularity and employs

reference counting to detect whether a cache line can be evicted or not. The proposed

software cache, fetches data at cache misses and write-backs data when the reference

counter of a cache line becomes zero. The software cache presented in this thesis dif-

fers in that it caches objects in contiguous memory locations, this way we are able to

reduce the amount of lookups to one per object access instead of one per field access.

Seo et al. [88] perform an extensive evaluation of four different software caches with

three different replacement policies each, first-in-first-out (FIFO), Clock, and least-recently-

used (LRU). Namely, the four software caches are the fully associative cache (FAC), 4-

way set associative cache (4WC), Indirect Index Cache (IIC), and Extended Set-Index

Cache (ESC). Their evaluation examines cache-line sizes in the range of [1KiB – 8KiB]

and the results show that the smaller the cache-line size, the larger the overhead.

Gonzàlez et al. [35] propose a compiler assisted hybrid approach to software caching.

The compiler separates memory references, according to their access patterns, in two

classes, high-locality and irregular. Each class is cached in a different cache. The High-

Locality Cache utilizes a reference counting algorithm to pin cache lines and increase the

hit ratio. The Transactional Cache, used for the irregular references, is a write-through

cache that reduces hit and miss overheads by utilizing SIMD compares. Memory con-

sistency is provided through the Memory Consistency Block, which handles all the data

transfers two and from the caches. To improve the cache performance, Gonzàlez et al.

also perform compile-time code transformations in loops according to the memory ac-

cess classification.

The software cache presented in this thesis differs from the above in that it operates on

object level granularity, and avoids fragmentation. The object level granularity, allows

us to fetch all data of an object in contiguous memory and avoid looking up the software

131

Chapter 7. Related work F. Zakkak

cache for each field access. On the contrary, we perform a single lookup per object, and

the reusing the value form the Java stack we are able to access the object’s fields by

adding the corresponding offset to the object’s address in the software cache. Further-

more, the lack of fragmentation allows us to fully utilize the limited memory resources

in Formic-Cube. On the other hand, our policies regarding capacity misses may result

in unnecessary invalidations of data. Our approach is fully distributed and does not rely

on processing units to handle the data and resolve conflicts in architectures that sup-

port write-backs of finer than the cache-line size granularity.

7.3. Java Virtual Machines

To the best of our knowledge, the only other JVM adhering to JMM [72] on a non-cache-

coherent architecture is Hera-JVM [73]. Hera-JVM also employs caches which it han-

dles in a similar manner to our implementation, with the difference that it starts a write-

back at every write, as we discuss in Section 5.3. Regarding the synchronization mech-

anisms, Hera-JVM relies on the Cell B.E.’s GETLLAR and PUTLLC instructions to build

an atomic compare-and-swap operation. However, such instructions are not available

on the architectures at hand [39, 66].

On a broader scope, however, most of the JVMs presented in Section 2.2 are also

related to this work, since as we state in Section 4.1 they help us spot the key challenges

faced when designing a JVM for hundreds of non-cache-coherent cores. Additionally,

some of the JVMs discussed in Section 2.2 provided the foundations for the algorithms

we present in Section 4.2 and later implement in Chapter 5.

132

Chapter 8.

Conclusions

This thesis aims to help future Java Virtual Machine (JVM) implementers better under-

stand the Java Memory Model (JMM) and the implications of its implementation in JVMs

targeting incoherent memory architectures.

To achieve this we first introduce the Java Distributed Memory Model (JDMM), an ex-

tension to the Java Memory Model aiming to bridge the gap between the Java Mem-

ory Model (JMM) specification and the memory management mechanisms provided by

future processor architectures that lack memory-coherency. JDMM exposes the mem-

ory management mechanisms, easing the process of implementing new Java Virtual

Machines (JVMs), or porting existing ones, on such architectures. JDMM is a pure ex-

tension of the JMM, which means that all properties of the JMM are also properties of

JDMM’s and all valid JMM re-orderings are also valid JDMM re-orderings. To the best

of our knowledge, JDMM is the first formalization of the JMM for non-cache-coherent

and distributed memories. Using JDMM, we were able to verify that Hera-JVM, a JVM

implementation for a distributed memory architecture, adheres to the JMM. We were

also able to detect a redundant invalidation of the software cache in the case of context

switching, which could potentially have a negative impact on the performance, as well

as, the energy consumption of Hera-JVM. This result increases our confidence that

JDMM can benefit JVM designers and developers in the future.

We propose novel algorithms for software caching of Java objects, and synchroniza-

tion management, as defined by the Java Memory Model. The algorithms presented in

this thesis adhere to the Java Memory Model and take advantage of coherent-islands,

groups of coherent cores in an otherwise incoherent processor, to improve performance

and reduce energy consumption. The software caching algorithms provide a memory

access layer hiding any complications of the underlying hardware, while the synchro-

nization management algorithms ensure mutual exclusion for threads synchronizing

through Java monitors. Furthermore, our algorithms ensure proper ordering between

threads that synchronize in a point-to-point manner without the use of Java monitors.

We design and build DiSquawk, a proof-of-concept Java virtual machine targeting the

Formic-Cube non-cache-coherent, 512-core, architecture. We also implement the inter-

coherent-island part of our algorithms in DiSquawk. In DiSquawk, each core runs an

instance of Squawk, an interpreter-based JVM. Those instances implicitly communicate

133

Chapter 8. Conclusions F. Zakkak

with each other and exchange data, to provide a single system image to the Java appli-

cation. We evaluate DiSquawk using a set of benchmarks and micro-benchmarks. The

micro-benchmarks help us better understand the behavior and performance of specific

mechanisms of DiSquawk, while the benchmarks help us measure its overall scalability.

The results show that DiSquawk scales with the number of cores in a similar manner to

the state-of-the-art, HotSpot JVM.

Finally, to show that our implementation adheres to JMM, we define DFJ, a Java core

calculus that models DiSquawk in its operational semantics. Then, based on this op-

erational semantics, we prove the adherence of our implementation and the proposed

algorithms to the Java Distributed Memory Model and thus to the original Java Memory

Model.

8.1. Further Work & Open Research Problems

During the models’ definitions and the software design and implementation phases we

have identified a few aspects of our work that could be improved. We discuss these

aspects bellow.

8.1.1. Machine-Checked Proofs

Although we formally define our models and present proof regarding the claims we

make, machine-checked proofs would significantly increase our confidence and allow

the community to advance our work with less effort. There are currently two dominant

proof assistants that provide formal languages to write mathematical definitions, Coq

and Isabelle [44, 95]. The formal languages provided by these tools is intuitive to users

familiar with language operational semantics. However, the modeling of various aspects

of a system (e.g., memory) in these formal languages is far from trivial. Lochbihler [63]

has put some significant effort on mechanically checking the Java Memory Model and

a number of fixes to some flows of it. We believe that a similar work for JDMM and DFJ

would significantly strengthen our contributions.

8.1.2. Evaluation on Non-emulated Architectures With Coherent-islands

As we discuss in Section 5.1, the evaluation of our implementation on an emulated non-

cache-coherent architecture imposes a number of limitations on both the implementation

of our algorithms as well as their evaluation. A non-emulated architecture with coherent-

islands, such as EUROSERVER [29], would allow us to fully implement and evaluate the

algorithms proposed in Chapter 4. That way we could better understand the ratios of

134

F. Zakkak 8.1. Further Work & Open Research Problems

the overheads imposed by the inter-coherent and intra-coherent parts of our algorithms

and possibly improve our algorithms.

8.1.3. State-of-the-art Core VM

In this thesis, as discussed in Section 5.2 due to the need to run on the bare metal

we choose the Squawk VM as our base VM and built on top of it. However, Squawk

VM is not a state-of-the-art VM and lacks many optimizations that are present in other

JVMs. Such an optimization is the Just In Time (JIT) compilation, that allows the JVM

to optimize performance by translating commonly used sequences of Java bytecodes

to native machine code. JIT compilation can significantly lower the execution time of a

program and thus affect the communication over computation ratio. Additionally, as we

discuss in Section 4.2.1, JIT compilation can be used to fine-tune the write-buffer on-

the-fly, according to the behavior of different code segments.

8.1.4. Garbage Collection

In this thesis we do not cover the aspect of garbage collection. Garbage collection, as

discussed in Chapter 4, is a major challenge when implementing Java on incoherent

memory architectures. A garbage collector targeting a JVM running on such architec-

tures needs to distribute the overhead of garbage collection, and avoid long pauses by

reducing the execution time of stop-the-world phases or even eliminating them. Stop-

the-world phases are phases where all application threads halt and only garbage collec-

tion threads run on the system. During this phases the application makes no progress,

which is prohibiting in real-time applications. Although there is a lot of work on paral-

lelizing garbage collection in the literature, these efforts focus on coherent memory ar-

chitectures. The task of designing garbage collectors that run efficiently on incoherent

memory architectures is not trivial and remains an open problem to work on.

8.1.5. java.util.concurrent

The java.util.concurrent package offers a number of fine-grained concurrent

data structures and abstractions that perform well on memory coherent architectures.

However, the implementation of this package using locks does not perform similar to the

corresponding implementation using atomic operations. Many of the data structures and

abstractions that rely on atomic operations perform badly on incoherent memory archi-

tectures. As a result, there is the need to modify this package or provide an alternative

one that will provide similar data structures and abstractions that perform better on in-

coherent memory architectures. The GreenVM project has made the first steps in this

135

Chapter 8. Conclusions F. Zakkak

direction by designing, implementing, and evaluating some distributed data structures

for that cause.

8.1.6. Java Memory Model Update

Although the memory model of a programming language needs to be architecture inde-

pendent, it still needs to expose details related to the state-of-the-art hardware mecha-

nisms to be more intuitive. As a result, as the hardware design advances and new hard-

ware primitives are introduced (or deprecated) memory models need to adapt in order

for their definitions and rules to better relate to their implementations using hardware-

primitives. At the time of writing there is an ongoing discussion about the improvement

of the Java Memory Model [47]. The main targets of this project are:

• The improvement of JMM’s formalization to make it machine checkable, as well

as, more human readable.

• The fix of existing errors as reported by Aspinall and Ševčı́k and Torlak et al. [97].

• The coverage of JVM related aspects, like class initialization. Currently JMM fo-

cuses on the Java programming language and not to its bytecode. This results in

ambiguous definitions about some JVM operations and the use of the Java byte-

code by other languages.

• The coverage of java.util.concurrent’s parts, as well as, any extensions

that my arise from forthcoming JDK Enhancement Proposals (JEPs).

• To provide compatibility with the C11 and C++11 standards, aiming to provide a

consistent behavior across Java and C/C++ native libraries.

• To provide a technical document to guide JVM implementors, JDK library devel-

opers, and developers, explaining how JMM impacts particular problems and so-

lutions.

• To provide tests for conformance to JMM.

• To provide an interface or hints for analysis tools that check for data-races and

security properties across multiple threads.

136

Bibliography

[1] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. “Scheduling Parallel Pro-

grams by Work Stealing with Private Deques”. In: Proceedings of the 18th ACM

SIGPLANSymposium onPrinciples and Practice of Parallel Programming. PPoPP

’13. Shenzhen, China: ACM, 2013, pages 219–228. isbn: 978-1-4503-1922-5.

doi: 10.1145/2442516.2442538. url: http://doi.acm.org/10.1145/

2442516.2442538 (cited on page 89).

[2] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar,

Peter Sewell, and Francesco Zappa Nardelli. “The Semantics of Power and ARM

Multiprocessor Machine Code”. In: Proceedings of the 4th Workshop on Declar-

ative Aspects of Multicore Programming. DAMP ’09. New York, NY, USA: ACM,

2008, pages 13–24 (cited on page 129).

[3] B Alpern, S Augart, and SM Blackburn. “The Jikes research virtual machine

project: building an open-source research community”. In: IBM Systems … 44.2

(2005), pages 399–417. url: http://ieeexplore.ieee.org/xpls/abs%

5C_all.jsp?arnumber=5386722 (cited on page 94).

[4] Gabriel Antoniu, Luc Bougé, Philip J. Hatcher, Mark MacBeth, Keith McGuigan,

and Raymond Namyst. “The Hyperion system: Compiling multithreaded Java

bytecode for distributed execution”. In:Parallel Computing 27.10 (2001), pages 1279–

1297. issn: 0167-8191. doi: 10.1016/S0167-8191(01)00093-X. url: http:

//dx.doi.org/10.1016/S0167-8191(01)00093-X (cited on pages 12,

21, 72).

[5] Yariv Aridor, Michael Factor, and Avi Teperman. “cJVM: A Single System Image

of a JVM on a Cluster”. In: Proceedings of the International Conference on Par-

allel Processing. ICPP. Wakamatsu, Japan: IEEE Computer Society, Sept. 1999,

pages 4–11. isbn: 0-7695-0350-0. doi: 10.1109/ICPP.1999.797382 (cited

on pages 3, 13, 21).

[6] David Aspinall and Jaroslav Ševčík. “Formalising Java’s Data Race Free Guar-

antee”. In: Proceedings of the 20th International Conference on Theorem Prov-

ing in Higher Order Logics. TPHOLs. Springer Berlin Heidelberg, 2007, pages 22–

37 (cited on page 22).

[7] David Aspinall and Jaroslav Ševčı́k. “Java Memory Model Examples: Good, Bad

and Ugly”. In: 1st International Workshop on Verification and Analysis of Multi-

threaded Java-like Programs. VAMP. 2007 (cited on pages 22, 65–67, 136).

137

http://dx.doi.org/10.1145/2442516.2442538
http://doi.acm.org/10.1145/2442516.2442538
http://doi.acm.org/10.1145/2442516.2442538
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5386722
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5386722
http://dx.doi.org/10.1016/S0167-8191(01)00093-X
http://dx.doi.org/10.1016/S0167-8191(01)00093-X
http://dx.doi.org/10.1016/S0167-8191(01)00093-X
http://dx.doi.org/10.1109/ICPP.1999.797382

Bibliography F. Zakkak

[8] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. “StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multi-

core Architectures”. In: Proceedings of the 15th International Euro-Par Confer-

ence on Parallel Processing. Euro-Par ’09. Berlin, Heidelberg: Springer-Verlag,

2009, pages 863–874. isbn: 978-3-642-03868-6. doi: http://dx.doi.org/

10.1007/978-3-642-03869-3_80. url: http://dx.doi.org/10.

1007/978-3-642-03869-3%5C_80 (cited on page 76).

[9] Jairo Balart, Marc Gonzalez, Xavier Martorell, Eduard Ayguade, Zehra Sura,

Tong Chen, Tao Zhang, Kevin O’brien, and Kathryn O’brien. “A novel asyn-

chronous software cache implementation for the cell-be processor”. In: Interna-

tional Workshop on Languages and Compilers for Parallel Computing. Springer.

2007, pages 125–140 (cited on page 131).

[10] Nick Benton, Andrew Kennedy, and George Russell. “Compiling standard ML to

Java bytecodes”. In: ACM SIGPLAN Notices 34.1 (1999), pages 129–140 (cited

on page 11).

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The PARSEC

Benchmark Suite: Characterization and Architectural Implications”. In: PACT’ 08.

2008 (cited on page 109).

[12] StephenMS.M. StephenM. Blackburn, Perry Cheng, and Kathryn SK.S. Kathryn

S. McKinley. “Oil and water? High performance garbage collection in Java with

MMTk”. In: Proceedings. 26th International Conference on Software Engineer-

ing (May 2004), pages 137–146. doi: 10.1109/ICSE.2004.1317436. url:

http://dl.acm.org/citation.cfm?id=998675.999420%20http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1317436 (cited on page 74).

[13] Stephen M. Blackburn, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria

Jump, Han Lee, J. Eliot, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas

VanDrunen, Robin Garner, Daniel von Dincklage, Ben Wiedermann, Chris Hoff-

mann, AsjadM. Khang, Kathryn S.McKinley, RotemBentzur, Amer Diwan, Daniel

Feinberg, and Daniel Frampton. “The DaCapo benchmarks”. In: ACM SIGPLAN

Notices 41.10 (Oct. 2006), page 169. issn: 03621340. doi: 10.1145/1167515.

1167488. url: http://dl.acm.org/citation.cfm?id=1167515.

1167488 (cited on pages 82, 99).

[14] Filip Blagojevic, Dimitris S Nikolopoulos, Alexandros Stamatakis, and Christos

D Antonopoulos. “Dynamic multigrain parallelization on the cell broadband en-

gine”. In: Proceedings of the 12th ACM SIGPLAN symposium on Principles and

practice of parallel programming. PPoPP ’07. New York, NY, USA: ACM, 2007,

pages 90–100. isbn: 978-1-59593-602-8. doi: http://doi.acm.org/10.

1145/1229428.1229445. url: http://doi.acm.org/10.1145/1229428.

1229445 (cited on page 76).

138

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-03869-3%5C_80
http://dx.doi.org/10.1007/978-3-642-03869-3%5C_80
http://dx.doi.org/10.1109/ICSE.2004.1317436
http://dl.acm.org/citation.cfm?id=998675.999420%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1317436
http://dl.acm.org/citation.cfm?id=998675.999420%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1317436
http://dl.acm.org/citation.cfm?id=998675.999420%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1317436
http://dx.doi.org/10.1145/1167515.1167488
http://dx.doi.org/10.1145/1167515.1167488
http://dl.acm.org/citation.cfm?id=1167515.1167488
http://dl.acm.org/citation.cfm?id=1167515.1167488
http://dx.doi.org/http://doi.acm.org/10.1145/1229428.1229445
http://dx.doi.org/http://doi.acm.org/10.1145/1229428.1229445
http://doi.acm.org/10.1145/1229428.1229445
http://doi.acm.org/10.1145/1229428.1229445

F. Zakkak Bibliography

[15] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-

son, Keith H Randall, Yuli Zhou, E Leiserson, C Kuszmaul, and H Randall. “Cilk:

An efficient multithreaded runtime system”. In: PPOPP. 1995, pages 207–216

(cited on page 76).

[16] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded Com-

putations by Work Stealing”. In: J. ACM 46.5 (Sept. 1999), pages 720–748. issn:

0004-5411. doi: 10.1145/324133.324234. url: http://doi.acm.org/

10.1145/324133.324234 (cited on page 76).

[17] Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen

Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,

and Mohsen Vakilian. “A Type and Effect System for Deterministic Parallel Java”.

In: OOPSLA ’09. OOPSLA ’09. Orlando, Florida, USA: ACM, 2009, pages 97–

116. isbn: 978-1-60558-766-0. doi: 10.1145/1640089.1640097. url: http:

//doi.acm.org/10.1145/1640089.1640097 (cited on page 77).

[18] Gérard Boudol and Gustavo Petri. “Relaxed Memory Models: An Operational

Approach”. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages. POPL ’09. Savannah, GA,

USA: ACM, 2009, pages 392–403. isbn: 978-1-60558-379-2. doi: 10.1145/

1480881.1480930. url: http://doi.acm.org/10.1145/1480881.

1480930 (cited on page 130).

[19] John B. Carter, John K. Bennett, and Willy Zwaenepoel. “Implementation and

Performance of Munin”. In: Proceedings of the Thirteenth ACM Symposium on

Operating Systems Principles. SOSP ’91. Pacific Grove, California, USA: ACM,

1991, pages 152–164. isbn: 0-89791-447-3. doi: 10.1145/121132.121159.

url: http://doi.acm.org/10.1145/121132.121159 (cited on page 73).

[20] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat, Howard

David, Dave Dunning, Joshua B. Fryman, Ivan Ganev, Roger A. Golliver, Rob C.

Knauerhase, Richard Lethin, Benoı̂t Meister, Asit K. Mishra, Wilfred R. Pinfold,

Justin Teller, Josep Torrellas, Nicolas Vasilache, Ganesh Venkatesh, and Jian-

ping Xu. “Runnemede: An architecture for Ubiquitous High-Performance Com-

puting.” In: Proceedings of the 19th IEEE International Symposium on High Per-

formanceComputer Architecture. HPCA. IEEEComputer Society, 2013, pages 198–

209 (cited on pages 2, 4, 7, 9, 17, 32).

[21] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. “The Java Memory

Model: Operationally, Denotationally, Axiomatically”. In: Proceedings of the 16th

European Symposium onProgramming. ESOP. Springer Berlin Heidelberg, 2007,

pages 331–346. url: http://dx.doi.org/10.1007/978-3-540-71316-

6_23 (cited on pages 22, 130).

[22] David Chase and Yossi Lev. “Dynamic Circular Work-stealing Deque”. In: SPAA

’05. SPAA ’05. Las Vegas, Nevada, USA: ACM, 2005, pages 21–28. isbn: 1-

139

http://dx.doi.org/10.1145/324133.324234
http://doi.acm.org/10.1145/324133.324234
http://doi.acm.org/10.1145/324133.324234
http://dx.doi.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/1640089.1640097
http://dx.doi.org/10.1145/1480881.1480930
http://dx.doi.org/10.1145/1480881.1480930
http://doi.acm.org/10.1145/1480881.1480930
http://doi.acm.org/10.1145/1480881.1480930
http://dx.doi.org/10.1145/121132.121159
http://doi.acm.org/10.1145/121132.121159
http://dx.doi.org/10.1007/978-3-540-71316-6_23
http://dx.doi.org/10.1007/978-3-540-71316-6_23

Bibliography F. Zakkak

58113-986-1. doi: 10.1145/1073970.1073974. url: http://doi.acm.

org/10.1145/1073970.1073974 (cited on page 76).

[23] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. “Cell Broadband Engine Ar-

chitecture and Its First Implementation-A Performance View”. In: IBM Journal of

Research and Development 51.5 (2007), pages 559–572. doi: 10.1147/rd.

515.0559. url: http://dx.doi.org/10.1147/rd.515.0559 (cited on

page 14).

[24] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honar-

mand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou.

“DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism”. In: 2011

International Conference on Parallel Architectures and Compilation Techniques

(Oct. 2011), pages 155–166. doi: 10.1109/PACT.2011.21. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6113797 (cited on pages 2, 7).

[25] The UPC Consortium. UPC language specification v1.3. 2005. url: https://

upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf

(cited on page 19).

[26] David A. Roberts. LLJVM. http://da.vidr.cc/projects/lljvm/. [On-

line; accessed 15-Apr-2013]. 2009 (cited on page 11).

[27] DelphineDemange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie,

and Jan Vitek. “Plan B: A Buffered Memory Model for Java”. In: Proceedings of

the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages. POPL ’13. Rome, Italy: ACM, 2013, pages 329–342. isbn: 978-

1-4503-1832-7. doi: 10.1145/2429069.2429110. url: http://doi.acm.

org/10.1145/2429069.2429110 (cited on page 130).

[28] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and

Jarek Nieplocha. “Scalable Work Stealing”. In: SC ’09. SC ’09. Portland, Oregon:

ACM, 2009, 53:1–53:11. isbn: 978-1-60558-744-8. doi: 10.1145/1654059.

1654113. url: http://doi.acm.org/10.1145/1654059.1654113 (cited

on pages 76, 89).

[29] Y. Durand, P.M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy, G. Gaydadjiev,

J. Goodacre, M. Katevenis, M. Marazakis, E. Matus, I. Mavroidis, and J. Thom-

son. “EUROSERVER: Energy Efficient Node for European Micro-Servers”. In:

17th Euromicro Conference onDigital SystemDesign. DSD. Aug. 2014, pages 206–

213. doi: 10.1109/DSD.2014.15 (cited on pages 2, 4, 9, 17, 134).

[30] Yong hun Eom, Stephen Yang, James C. Jenista, and Brian Demsky. “DOJ: Dy-

namically Parallelizing Object-Oriented Programs”. In: Proceedings of the 17th

ACM SIGPLAN symposium on Principles and Practice of Parallel Programming

- PPoPP ’12. New York, New York, USA: ACM Press, Feb. 2012, page 85. isbn:

9781450311601. doi: 10.1145/2145816.2145828. url: http://dl.acm.

org/citation.cfm?id=2145816.2145828 (cited on page 77).

140

http://dx.doi.org/10.1145/1073970.1073974
http://doi.acm.org/10.1145/1073970.1073974
http://doi.acm.org/10.1145/1073970.1073974
http://dx.doi.org/10.1147/rd.515.0559
http://dx.doi.org/10.1147/rd.515.0559
http://dx.doi.org/10.1147/rd.515.0559
http://dx.doi.org/10.1109/PACT.2011.21
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6113797
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6113797
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6113797
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
http://da.vidr.cc/projects/lljvm/
http://dx.doi.org/10.1145/2429069.2429110
http://doi.acm.org/10.1145/2429069.2429110
http://doi.acm.org/10.1145/2429069.2429110
http://dx.doi.org/10.1145/1654059.1654113
http://dx.doi.org/10.1145/1654059.1654113
http://doi.acm.org/10.1145/1654059.1654113
http://dx.doi.org/10.1109/DSD.2014.15
http://dx.doi.org/10.1145/2145816.2145828
http://dl.acm.org/citation.cfm?id=2145816.2145828
http://dl.acm.org/citation.cfm?id=2145816.2145828

F. Zakkak Bibliography

[31] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. “Dark Silicon and the End of Multicore Scaling”. In: Proceed-

ings of the 38th Annual International Symposium on Computer Architecture.

ISCA ’11. San Jose, California, USA: ACM, 2011, pages 365–376. isbn: 978-

1-4503-0472-6. doi: 10.1145/2000064.2000108. url: http://doi.acm.

org/10.1145/2000064.2000108 (cited on pages 1, 7).

[32] Michael Factor, Assaf Schuster, and Konstantin Shagin. “JavaSplit: a runtime

for execution of monolithic Java programs on heterogenous collections of com-

modity workstations”. In: Proceedings of the International Conference on Cluster

Computing. CLUSTER. 2003, pages 110–117. doi: 10.1109/CLUSTR.2003.

1253306 (cited on pages 21, 72).

[33] Foivos S. Zakkak and Polyvios Pratikakis. “Building a Java Virtual Machine for

Non-Cache-Coherent Many-core Architectures”. In: Proceedings of the 14th In-

ternational Workshop on Java Technologies for Real-Time and Embedded Sys-

tems. JTRES ’16. Lugano, Switzerland: ACM, 2016. isbn: 978-1-4503-4800-3.

doi: 10.1145/2990509.2990510. url: http://dx.doi.org/10.1145/

2990509.2990510 (cited on pages 71, 93).

[34] Foivos S. Zakkak and Polyvios Pratikakis. “DiSquawk: 512 Cores, 512 Memo-

ries, 1 JVM”. In: Proceedings of the 13th International Conference on Principles

and Practices of Programming on the Java Platform: Virtual Machines, Lan-

guages, and Tools. PPPJ ’16. Lugano, Switzerland: ACM, 2016, 2:1–2:12. isbn:

978-1-4503-4135-6. doi: 10.1145/2972206.2972212. url: http://doi.

acm.org/10.1145/2972206.2972212 (cited on page 115).

[35] Marc Gonzàlez, Nikola Vujic, Xavier Martorell, Eduard Ayguadé, Alexandre E

Eichenberger, Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and Kathryn

O’Brien. “Hybrid access-specific software cache techniques for the cell BE ar-

chitecture”. In: Proceedings of the 17th international conference on Parallel ar-

chitectures and compilation techniques. ACM. 2008, pages 292–302 (cited on

page 131).

[36] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language

Specification, 3rd Edition. Addison-Wesley Professional, 2005. isbn: 0321246780

(cited on page 22).

[37] JamesGosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java(TM)

Language Specification, Java SE 8 Edition. 2015 (cited on page 102).

[38] TorstenHoefler, JamesDinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William

Gropp, and Keith Underwood. “Remote Memory Access Programming in MPI-3”.

In: ACM Trans. Parallel Comput. 2.2 (June 2015), 9:1–9:26. issn: 2329-4949.

doi: 10.1145/2780584. url: http://doi.acm.org/10.1145/2780584

(cited on page 129).

141

http://dx.doi.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/CLUSTR.2003.1253306
http://dx.doi.org/10.1109/CLUSTR.2003.1253306
http://dx.doi.org/10.1145/2990509.2990510
http://dx.doi.org/10.1145/2990509.2990510
http://dx.doi.org/10.1145/2990509.2990510
http://dx.doi.org/10.1145/2972206.2972212
http://doi.acm.org/10.1145/2972206.2972212
http://doi.acm.org/10.1145/2972206.2972212
http://dx.doi.org/10.1145/2780584
http://doi.acm.org/10.1145/2780584

Bibliography F. Zakkak

[39] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.

Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,

P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,

M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van

der Wijngaart, and T. Mattson. “A 48-Core IA-32 message-passing processor

with DVFS in 45nm CMOS”. In: Proceedings of the International Solid-State Cir-

cuits Conference. ISSCC. 2010, pages 108–109. doi: 10.1109/ISSCC.2010.

5434077 (cited on pages 2, 32, 76, 101, 132).

[40] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss,

Zhenlin Wang, and Perry Cheng. “The Garbage Collection Advantage : Improv-

ing Program Locality”. In: ACM SIGPLAN Notices 39.10 (Oct. 2004), page 69.

issn: 03621340. doi: 10.1145/1035292.1028983. url: http://dl.acm.

org/citation.cfm?id=1035292.1028983 (cited on page 84).

[41] Jim Hugunin. “Python and Java: The best of both worlds”. In: Proceedings of

the 6th international Python conference (1997). url: http://citeseer.ist.

psu.edu/viewdoc/summary?doi=10.1.1.43.1100%20http://www.

hugunin.net/papers/hugunin97python.pdf (cited on page 11).

[42] Marieke Huisman and Gustavo Petri. “The Java Memory Model: a Formal Ex-

planation”. In: 1st International Workshop on Verification and Analysis of Multi-

threaded Java-like Programs. VAMP. 2007, pages 81–96 (cited on page 22).

[43] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. “Featherweight Java: A

Minimal Core Calculus for Java and GJ”. In: Proceedings of the 14th ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications. OOPSLA ’99. Denver, Colorado, USA: ACM, 1999, pages 132–

146. isbn: 1-58113-238-7. doi: 10.1145/320384.320395. url: http://doi.

acm.org/10.1145/320384.320395 (cited on pages 5, 115).

[44] Isabelle. URL, https://isabelle.in.tum.de/. url: https://isabelle.in.tum.

de/ (cited on page 134).

[45] Radha Jagadeesan, Corin Pitcher, and James Riely. “Generative Operational

Semantics for Relaxed Memory Models”. In: Proceedings of the 19th European

Symposium on Programming. ESOP. Springer, 2010, pages 307–326 (cited on

pages 22, 130).

[46] James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. “OoO-

Java: Software Out-of-order Execution”. In: PPoPP ’11. PPoPP ’11. San Antonio,

TX, USA: ACM, 2011, pages 57–68. isbn: 978-1-4503-0119-0. doi: 10.1145/

1941553.1941563. url: http://doi.acm.org/10.1145/1941553.

1941563 (cited on page 77).

[47] JEP-188: Java™Memory Model Update. url: http://openjdk.java.net/

jeps/188 (cited on pages 22, 136).

142

http://dx.doi.org/10.1109/ISSCC.2010.5434077
http://dx.doi.org/10.1109/ISSCC.2010.5434077
http://dx.doi.org/10.1145/1035292.1028983
http://dl.acm.org/citation.cfm?id=1035292.1028983
http://dl.acm.org/citation.cfm?id=1035292.1028983
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1100%20http://www.hugunin.net/papers/hugunin97python.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1100%20http://www.hugunin.net/papers/hugunin97python.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1100%20http://www.hugunin.net/papers/hugunin97python.pdf
http://dx.doi.org/10.1145/320384.320395
http://doi.acm.org/10.1145/320384.320395
http://doi.acm.org/10.1145/320384.320395
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
http://dx.doi.org/10.1145/1941553.1941563
http://dx.doi.org/10.1145/1941553.1941563
http://doi.acm.org/10.1145/1941553.1941563
http://doi.acm.org/10.1145/1941553.1941563
http://openjdk.java.net/jeps/188
http://openjdk.java.net/jeps/188

F. Zakkak Bibliography

[48] Einar Broch Johnsen, Thi Mai Thuong Tran, Olaf Owe, and Martin Steffen. “Safe

locking for multi-threaded Java with exceptions”. In: The Journal of Logic and

Algebraic Programming 81.3 (2012). The 22nd Nordic Workshop on Program-

ming Theory (NWPT) 2010, pages 257–283. issn: 1567-8326. doi: http://

dx.doi.org/10.1016/j.jlap.2011.11.002. url: http://www.

sciencedirect . com / science / article / pii / S1567832611000968

(cited on pages 5, 115, 118, 123, 130).

[49] Salil Joshi and Sanjiva Prasad. “An Operational Model for Multiprocessors with

Caches”. English. In: Theoretical Computer Science. Edited by CristianS. Calude

and Vladimiro Sassone. Volume 323. IFIP Advances in Information and Com-

munication Technology. Springer Berlin Heidelberg, 2010, pages 371–385. isbn:

978-3-642-15239-9. doi: 10.1007/978-3-642-15240-5_27. url: http:

//dx.doi.org/10.1007/978-3-642-15240-5_27 (cited on page 130).

[50] JSR-133 Java™Memory Model and Thread Specification. url: http://www.

cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf (cited on page 31).

[51] ISO JTC. SC22/WG14. ISO/IEC 9899: 2011. 2011. url: http://www.iso.

org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=57853 (cited on page 19).

[52] ISO JTC. SC22/WG21. ISO/IEC 14882:2011. 2011. url: http://www.iso.

org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=50372 (cited on page 19).

[53] Stefanos Kaxiras and Georgios Keramidas. “SARC coherence: Scaling directory

cache coherence in performance and power”. In:Micro, IEEE (2010), pages 54–

65. url: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?

arnumber=5582068 (cited on pages 2, 7).

[54] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. “Tread-

Marks: Distributed Shared Memory on Standard Workstations and Operating

Systems”. In: Proceedings of the USENIX Winter 1994 Technical Conference

on USENIX Winter 1994 Technical Conference. WTEC’94. San Francisco, Cali-

fornia: USENIX Association, 1994, pages 10–10. url: http://dl.acm.org/

citation.cfm?id=1267074.1267084 (cited on page 73).

[55] Pete Keleher, Alan L Cox, and Willy Zwaenepoel. “Lazy release consistency for

software distributed shared memory”. In: ISCA. Volume 20. ISCA. 00876. ACM,

1992 (cited on page 20).

[56] L. Lamport. “How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs”. In: Computers, IEEE Transactions on C-28.9 (1979),

pages 690–691. issn: 0018-9340. doi: 10.1109/TC.1979.1675439 (cited on

page 20).

143

http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2011.11.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2011.11.002
http://www.sciencedirect.com/science/article/pii/S1567832611000968
http://www.sciencedirect.com/science/article/pii/S1567832611000968
http://dx.doi.org/10.1007/978-3-642-15240-5_27
http://dx.doi.org/10.1007/978-3-642-15240-5_27
http://dx.doi.org/10.1007/978-3-642-15240-5_27
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5582068
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5582068
http://dl.acm.org/citation.cfm?id=1267074.1267084
http://dl.acm.org/citation.cfm?id=1267074.1267084
http://dx.doi.org/10.1109/TC.1979.1675439

Bibliography F. Zakkak

[57] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed Sys-

tem”. In: Commun. ACM 21.7 (1978), pages 558–565. issn: 0001-0782. doi: 10.

1145/359545.359563. url: http://doi.acm.org/10.1145/359545.

359563 (cited on pages 26, 72, 154).

[58] Doug Lea. The JSR-133 cookbook for compiler writers. 2008 (cited on page 103).

[59] Jaejin Lee, Jun Lee, Sangmin Seo, Jungwon Kim, Seungkyun Kim, and Zehra

Sura. “COMIC++: A software SVM system for heterogeneous multicore accel-

erator clusters”. In: HPCA-16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture. IEEE. 2010, pages 1–12 (cited on

pages 73, 131).

[60] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun, Zehra

Sura, Jungwon Kim, and SangYong Han. “COMIC: A Coherent Shared Memory

Interface for Cell Be”. In: Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques. PACT ’08. Toronto, Ontario,

Canada: ACM, 2008, pages 303–314. isbn: 978-1-60558-282-5. doi: 10.1145/

1454115.1454157. url: http://doi.acm.org/10.1145/1454115.

1454157 (cited on pages 73, 131).

[61] Kai Li and Paul Hudak. “Memory Coherence in Shared Virtual Memory Systems”.

In: Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed

Computing. PODC ’86. Calgary, Alberta, Canada: ACM, 1986, pages 229–239.

isbn: 0-89791-198-9. doi: 10.1145/10590.10610. url: http://doi.acm.

org/10.1145/10590.10610 (cited on page 73).

[62] Tim Lindholm and Frank Yellin. Java virtual machine specification. Addison-Wesley

Longman Publishing Co., Inc., 1999 (cited on page 11).

[63] Andreas Lochbihler. “A machine-checked, type-safe model of Java concurrency:

language, virtual machine, memory model, and verified compiler”. PhD thesis.

Karlsruhe Institute of Technology, 2012. isbn: 978-3-86644-885-8. url: http:

//d-nb.info/1026537800 (cited on page 134).

[64] Andreas Lochbihler. “Java and the Java Memory Model — A Unified, Machine-

Checked Formalisation”. In: Proceedings of the 21th European Symposium on

Programming. ESOP. Springer Berlin Heidelberg, 2012, pages 497–517. doi:

10.1007/978-3-642-28869-2_25. url: http://dx.doi.org/10.1007/

978-3-642-28869-2_25 (cited on page 24).

[65] Andreas Lochbihler. “Making the Java Memory Model Safe”. In: ACM Transac-

tions on Programming Languages and Systems. TOPLAS 35.4 (2014), pages 1–

65. issn: 0164-0925. doi: 10.1145/2518191. url: http://doi.acm.org/

10.1145/2518191 (cited on pages 22, 23, 28).

144

http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://dx.doi.org/10.1145/1454115.1454157
http://dx.doi.org/10.1145/1454115.1454157
http://doi.acm.org/10.1145/1454115.1454157
http://doi.acm.org/10.1145/1454115.1454157
http://dx.doi.org/10.1145/10590.10610
http://doi.acm.org/10.1145/10590.10610
http://doi.acm.org/10.1145/10590.10610
http://d-nb.info/1026537800
http://d-nb.info/1026537800
http://dx.doi.org/10.1007/978-3-642-28869-2_25
http://dx.doi.org/10.1007/978-3-642-28869-2_25
http://dx.doi.org/10.1007/978-3-642-28869-2_25
http://dx.doi.org/10.1145/2518191
http://doi.acm.org/10.1145/2518191
http://doi.acm.org/10.1145/2518191

F. Zakkak Bibliography

[66] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M.

Katevenis, D. Pnevmatikatos, and D. Nikolopoulos. “Formic: Cost-efficient and

Scalable Prototyping of Manycore Architectures”. In: Proceedings of the 20th An-

nual International Symposium on Field-Programmable Custom Computing Ma-

chines. FCCM. 2012, pages 61–64. doi: 10.1109/FCCM.2012.20 (cited on

pages 2, 4, 9, 17, 32, 93, 101, 132).

[67] Spyros Lyberis. “Myrmics: A Scalable RuntimeSystem for Global Address Spaces”.

PhD thesis. Computer Science Department, University of Crete, 2013 (cited on

pages 2, 9, 32).

[68] MWMacBeth, KAMcGuigan, and PJHatcher. “Executing Java threads in parallel

in a distributed-memory environment”. In: …of the 1998 conference of the …

(1998). url: http://dl.acm.org/citation.cfm?id=783176 (cited on

pages 3, 12, 21).

[69] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Al-

glave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek

Williams. “An Axiomatic Memory Model for POWER Multiprocessors”. In: Pro-

ceedings of the 24th International Conference on Computer Aided Verification.

CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012, pages 495–512 (cited on

page 129).

[70] Jeremy Manson. “The Java Memory Model”. PhD thesis. 2004. url: http://

drum.lib.umd.edu/bitstream/1903/1949/1/umi-umd-1898.pdf

(cited on pages 14, 15, 19, 22–24, 27, 29, 47, 48, 67–69, 151).

[71] Jeremy Manson, William Pugh, and Sarita Adve. SPECIAL POPL ISSUE: The

Java™Memory Model. url: https://dl.dropboxusercontent.com/u/

1011627/journal.pdf (cited on pages 31, 69).

[72] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java Memory Model”.

In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL. Long Beach, California, USA, Jan. 2005,

pages 378–391. isbn: 1-58113-830-X. doi: 10.1145/1047659.1040336. url:

http://doi.acm.org/10.1145/1040305.1040336 (cited on pages 11,

14, 15, 19, 22, 24, 30, 31, 54, 69, 120, 132, 154, 156, 157).

[73] Ross McIlroy and Joe Sventek. “Hera-JVM: a runtime system for heterogeneous

multi-core architectures”. In: Proceedings of the ACM international conference

onObject oriented programming systems languages and applications - OOPSLA

’10. Volume 45. 10. New York, New York, USA: ACMPress, Oct. 2010, page 205.

isbn: 9781450302036. doi: 10.1145/1869459.1869478. url: http://dl.

acm.org/citation.cfm?id=1869459.1869478 (cited on pages 4, 15, 19,

21, 69, 72, 78, 132).

[74] MicroBlaze Soft Processor Core. url: http://www.xilinx.com/tools/

microblaze.htm (cited on page 93).

145

http://dx.doi.org/10.1109/FCCM.2012.20
http://dl.acm.org/citation.cfm?id=783176
http://drum.lib.umd.edu/bitstream/1903/1949/1/umi-umd-1898.pdf
http://drum.lib.umd.edu/bitstream/1903/1949/1/umi-umd-1898.pdf
https://dl.dropboxusercontent.com/u/1011627/journal.pdf
https://dl.dropboxusercontent.com/u/1011627/journal.pdf
http://dx.doi.org/10.1145/1047659.1040336
http://doi.acm.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/1869459.1869478
http://dl.acm.org/citation.cfm?id=1869459.1869478
http://dl.acm.org/citation.cfm?id=1869459.1869478
http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/tools/microblaze.htm

Bibliography F. Zakkak

[75] Robin Milner. Operational and Algebraic Semantics of Concurrent Processes.

1990. doi: 10.1016/B978-0-444-88074-1.50024-X. url: http://www.

sciencedirect.com/science/article/pii/B978044488074150024X%

7B%5C%%7D5Cnhttp://linkinghub.elsevier.com/retrieve/pii/

B978044488074150024X (cited on page 117).

[76] Seung-Jai Min, Costin Iancu, and Katherine Yelick. “Hierarchical work stealing

on manycore clusters”. In: PGAS ’11. 2011 (cited on page 76).

[77] Albert Noll, Andreas Gal, and Michael Franz. “CellVM: A homogeneous virtual

machine runtime system for a heterogeneous single-chip multiprocessor”. In:

Workshop on Cell Systems and Applications (2008). url: http://www.ics.

uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-17.pdf (cited on pages 4,

14, 15).

[78] Martin Odersky, Philippe Altherr, Vincent Cremet, and Burak Emir. “An overview

of the Scala programming language”. In: Section 5 (2004). url: http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.127.184%5C&rep=

rep1%5C&type=pdf (cited on pages 4, 11).

[79] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86 Memory Model:

x86-TSO”. In: Proceedings of the 22th International Conference on Theorem

Proving in Higher Order Logics. TPHOLs. Springer Berlin Heidelberg, 2009,

pages 391–407. isbn: 978-3-642-03358-2 (cited on pages 20, 31, 129).

[80] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David

Holmes. Java concurrency in practice. Pearson Education, 2006 (cited on page 103).

[81] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle, A.

Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,

M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa. “The

design and implementation of a first-generation CELL processor”. In: ISSCC.

2005 IEEE International Digest of Technical Papers. Solid-State Circuits Con-

ference, 2005. Feb. 2005, pages 184–592. doi: 10 . 1109 / isscc . 2005 .

1493930. url: http://dx.doi.org/10.1109/isscc.2005.1493930

(cited on pages 4, 14).

[82] Polyvios Pratikakis, Hans Vandierendonck, Spyros Lyberis, andDimitrios S. Nikolopou-

los. “A Programming Model for Deterministic Task Parallelism”. In: Proceedings

of the 2011 ACM SIGPLAN Workshop on Memory Systems Performance and

Correctness. MSPC ’11. San Jose, California: ACM, 2011, pages 7–12. isbn:

978-1-4503-0794-9. doi: 10.1145/1988915.1988918. url: http://doi.

acm.org/10.1145/1988915.1988918 (cited on page 129).

[83] William Pugh and Jeremy Manson. Java Memory Model Causality Test Cases.

On http://www.cs.umd.edu/ as ˜pugh/java/memoryModel/CausalityTestCases.html.

2004. url: http://www.cs.umd.edu/~pugh/java/memoryModel/

CausalityTestCases.html (cited on pages 22, 54).

146

http://dx.doi.org/10.1016/B978-0-444-88074-1.50024-X
http://www.sciencedirect.com/science/article/pii/B978044488074150024X%7B%5C%%7D5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B978044488074150024X
http://www.sciencedirect.com/science/article/pii/B978044488074150024X%7B%5C%%7D5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B978044488074150024X
http://www.sciencedirect.com/science/article/pii/B978044488074150024X%7B%5C%%7D5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B978044488074150024X
http://www.sciencedirect.com/science/article/pii/B978044488074150024X%7B%5C%%7D5Cnhttp://linkinghub.elsevier.com/retrieve/pii/B978044488074150024X
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-17.pdf
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-17.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.184%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.184%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.184%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1109/isscc.2005.1493930
http://dx.doi.org/10.1109/isscc.2005.1493930
http://dx.doi.org/10.1109/isscc.2005.1493930
http://dx.doi.org/10.1145/1988915.1988918
http://doi.acm.org/10.1145/1988915.1988918
http://doi.acm.org/10.1145/1988915.1988918
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html

F. Zakkak Bibliography

[84] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc

Maranget, Jade Alglave, andDerekWilliams. “Synchronising C/C++ and POWER”.

In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI ’12. ACM, 2012, pages 311–322 (cited

on page 129).

[85] Susmit Sarkar, Peter Sewell, Francesco ZappaNardelli, Scott Owens, TomRidge,

Thomas Braibant, Magnus O. Myreen, and Jade Alglave. “The Semantics of x86-

CC Multiprocessor Machine Code”. In: Proceedings of the 36th Annual ACM

SIGPLAN-SIGACTSymposium onPrinciples of Programming Languages. POPL

’09. New York, NY, USA: ACM, 2009, pages 379–391 (cited on page 129).

[86] Daniel J. Scales, KouroshGharachorloo, andChandramohanA. Thekkath. “Shasta:

A LowOverhead, Software-only Approach for Supporting Fine-grain SharedMem-

ory”. In: Proceedings of the Seventh International Conference on Architectural

Support for Programming Languages andOperating Systems. ASPLOSVII. Cam-

bridge, Massachusetts, USA: ACM, 1996, pages 174–185. isbn: 0-89791-767-7.

doi: 10.1145/237090.237179. url: http://doi.acm.org/10.1145/

237090.237179 (cited on page 73).

[87] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James

R. Larus, and David A. Wood. “Fine-grain Access Control for Distributed Shared

Memory”. In: Proceedings of the Sixth International Conference on Architectural

Support for Programming Languages and Operating Systems. ASPLOS VI. San

Jose, California, USA: ACM, 1994, pages 297–306. isbn: 0-89791-660-3. doi:

10.1145/195473.195575. url: http://doi.acm.org/10.1145/

195473.195575 (cited on page 73).

[88] Sangmin Seo, Jaejin Lee, and Zehra Sura. “Design and implementation of software-

managed caches for multicores with local memory”. In: 2009 IEEE 15th Inter-

national Symposium on High Performance Computer Architecture. IEEE. 2009,

pages 55–66 (cited on page 131).

[89] Jaroslav Ševčı́k and David Aspinall. “On Validity of Program Transformations in

the Java Memory Model”. In: Proceedings of the 22nd European Conference on

Object-Oriented Programming. ECOOP. Springer, 2008, pages 27–51 (cited on

page 22).

[90] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. “The

Hadoop Distributed File System”. In: 2010 IEEE 26th Symposium on Mass Stor-

age Systems and Technologies (MSST). May 2010, pages 1–10. doi: 10.1109/

msst.2010.5496972. url: http://dx.doi.org/10.1109/msst.2010.

5496972 (cited on page 4).

[91] Doug Simon and C Cifuentes. “The squawk virtual machine: Java™ on the bare

metal”. In: Companion to the 20th annual ACM SIGPLAN … (2005). url: http:

//dl.acm.org/citation.cfm?id=1094908 (cited on page 94).

147

http://dx.doi.org/10.1145/237090.237179
http://doi.acm.org/10.1145/237090.237179
http://doi.acm.org/10.1145/237090.237179
http://dx.doi.org/10.1145/195473.195575
http://doi.acm.org/10.1145/195473.195575
http://doi.acm.org/10.1145/195473.195575
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dl.acm.org/citation.cfm?id=1094908
http://dl.acm.org/citation.cfm?id=1094908

Bibliography F. Zakkak

[92] L. A. Smith, J. M. Bull, and J. Obdrzálek. “A Parallel Java Grande Benchmark

Suite”. In: SC ’01. Denver, Colorado, 2001. isbn: 1-58113-293-X. doi: 10.1145/

582034.582042. url: http://doi.acm.org/10.1145/582034.582042

(cited on page 109).

[93] Fengguang Song, Asim YarKhan, and Jack Dongarra. “Dynamic task schedul-

ing for linear algebra algorithms on distributed-memory multicore systems”. In:

Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis. SC ’09. New York, NY, USA: ACM, 2009, 19:1–19:11.

isbn: 978-1-60558-744-8. doi: http://doi.acm.org/10.1145/1654059.

1654079. url: http://doi.acm.org/10.1145/1654059.1654079 (cited

on page 76).

[94] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas

Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. “Cashmere-2L:

Software Coherent Shared Memory on a Clustered Remote-write Network”. In:

Proceedings of the Sixteenth ACM Symposium on Operating Systems Princi-

ples. SOSP ’97. Saint Malo, France: ACM, 1997, pages 170–183. isbn: 0-89791-916-5.

doi: 10.1145/268998.266675. url: http://doi.acm.org/10.1145/

268998.266675 (cited on page 73).

[95] The Coq Proof Assistant. URL, https://coq.inria.fr/. url: https://coq.inria.

fr/ (cited on page 134).

[96] The JSR-133 Cookbook for Compiler Writers. url: http://gee.cs.oswego.

edu/dl/jmm/cookbook.html (cited on page 31).

[97] Emina Torlak, Mandana Vaziri, and Julian Dolby. “MemSAT: Checking Axiomatic

Specifications of Memory Models”. In: Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. PLDI. Toronto,

Ontario, Canada: ACM, 2010, pages 341–350. isbn: 978-1-4503-0019-3. doi:

10.1145/1806596.1806635. url: http://doi.acm.org/10.1145/

1806596.1806635 (cited on pages 22, 65, 66, 136).

[98] George Tzenakis, Konstantinos Kapelonis, Michail Alvanos, Konstantinos Koukos,

Dimitrios S Nikolopoulos, and Angelos Bilas. “{Tagged Procedure Calls} ({TPC}):

Efficient Runtime Support for Task-Based Parallelism on the Cell Processor”.

In: HiPEAC. Edited by Yale N Patt, Pierfrancesco Foglia, Evelyn Duesterwald,

Paolo Faraboschi, and Xavier Martorell. Volume 5952. Lecture Notes in Com-

puter Science. Springer, 2010, pages 307–321. isbn: 978-3-642-11514-1 (cited

on page 76).

[99] Rob V Van Nieuwpoort, Thilo Kielmann, and Henri E Bal. “Satin: Efficient parallel

divide-and-conquer in java”. In: Euro-Par 2000 Parallel Processing. Springer.

2000, pages 690–699 (cited on page 77).

148

http://dx.doi.org/10.1145/582034.582042
http://dx.doi.org/10.1145/582034.582042
http://doi.acm.org/10.1145/582034.582042
http://dx.doi.org/http://doi.acm.org/10.1145/1654059.1654079
http://dx.doi.org/http://doi.acm.org/10.1145/1654059.1654079
http://doi.acm.org/10.1145/1654059.1654079
http://dx.doi.org/10.1145/268998.266675
http://doi.acm.org/10.1145/268998.266675
http://doi.acm.org/10.1145/268998.266675
https://coq.inria.fr/
https://coq.inria.fr/
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://dx.doi.org/10.1145/1806596.1806635
http://doi.acm.org/10.1145/1806596.1806635
http://doi.acm.org/10.1145/1806596.1806635

F. Zakkak Bibliography

[100] R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. “Distributed Shared Memory Man-

agement for Java”. In: Proceedings of the 6th Annual Conference of the Ad-

vanced School for Computing and Imaging. ASCI. 1999, pages 256–264 (cited

on pages 21, 72).

[101] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Lau-

rent Daynès, and Douglas Simon. “Maxine: An Approachable Virtual Machine for,

and in, Java”. In: ACM Trans. Archit. Code Optim. 9.4 (Jan. 2013), 30:1–30:24.

issn: 1544-3566. doi: 10.1145/2400682.2400689. url: http://doi.acm.

org/10.1145/2400682.2400689 (cited on page 94).

[102] Weimin Yu and Alan Cox. “Java/DSM: A platform for heterogeneous computing”.

In:Concurrency: Practice and Experience 9.April (1997), pages 1213–1224. url:

http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-

9128(199711)9:11%3C1213::AID-CPE333%3E3.0.CO;2-J/abstract

(cited on pages 3, 12, 21, 72).

[103] Foivos S. Zakkak and Polyvios Pratikakis. “JDMM: A Java Memory Model for

Non-cache-coherent Memory Architectures”. In: Proceedings of the 2014 Inter-

national Symposium on Memory Management. ISMM ’14. Edinburgh, United

Kingdom: ACM, 2014, pages 83–92. isbn: 978-1-4503-2921-7. doi: 10.1145/

2602988.2602999. url: http://doi.acm.org/10.1145/2602988.

2602999 (cited on pages 19, 154).

[104] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. “Software

Write Detection for a Distributed Shared Memory”. In: Proceedings of the 1st

USENIX Conference on Operating Systems Design and Implementation. OSDI

’94. Monterey, California: USENIX Association, 1994. url: http://dl.acm.

org/citation.cfm?id=1267638.1267646 (cited on page 73).

[105] Gengbin Zheng, EstebanMeneses, Abhinav Bhatele, and Laxmikant V Kale. “Hi-

erarchical load balancing for Charm++ applications on large supercomputers”.

In: ICPPW ’10. IEEE. 2010, pages 436–444 (cited on page 76).

[106] Yuanyuan Zhou, Liviu Iftode, and Kai Li. “Performance Evaluation of Two Home-

based Lazy Release Consistency Protocols for Shared Virtual Memory Sys-

tems”. In: Proceedings of the Second USENIX Symposium on Operating Sys-

tems Design and Implementation. OSDI ’96. Seattle, Washington, USA: ACM,

1996, pages 75–88. isbn: 1-880446-82-0. doi: 10.1145/238721.238763. url:

http://doi.acm.org/10.1145/238721.238763 (cited on page 73).

[107] Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. “JESSICA2: A Distributed

Java Virtual Machine with Transparent Thread Migration Support”. In: Proceed-

ings of the IEEE International Conference on Cluster Computing. CLUSTER.

IEEE Computer Society, 2002, pages 381–388. isbn: 0-7695-1745-5. url: http:

//dl.acm.org/citation.cfm?id=792762.793331 (cited on pages 3, 14,

21, 72, 77, 79, 84).

149

http://dx.doi.org/10.1145/2400682.2400689
http://doi.acm.org/10.1145/2400682.2400689
http://doi.acm.org/10.1145/2400682.2400689
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9128(199711)9:11%3C1213::AID-CPE333%3E3.0.CO;2-J/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9128(199711)9:11%3C1213::AID-CPE333%3E3.0.CO;2-J/abstract
http://dx.doi.org/10.1145/2602988.2602999
http://dx.doi.org/10.1145/2602988.2602999
http://doi.acm.org/10.1145/2602988.2602999
http://doi.acm.org/10.1145/2602988.2602999
http://dl.acm.org/citation.cfm?id=1267638.1267646
http://dl.acm.org/citation.cfm?id=1267638.1267646
http://dx.doi.org/10.1145/238721.238763
http://doi.acm.org/10.1145/238721.238763
http://dl.acm.org/citation.cfm?id=792762.793331
http://dl.acm.org/citation.cfm?id=792762.793331

Bibliography F. Zakkak

[108] John N Zigman and Ramesh Sankaranarayana. “Designing a Distributed JVM

on a Cluster”. In: Proceedings of the 17th High Performance and Large Scale

Computing Conference. HP&LSC. 2002 (cited on page 21).

150

Appendix A.

JDMM Formal Definitions and DJC

This appendix presents the JDMM’s formal definitions and their corresponding formalism

in DJC, where appropriate.

In DJC, executions are expressed as sequences of state transitions. We use 𝑆
ℒ
−→ 𝑆′ to

denote a transition from state 𝑆 to state 𝑆′, where dom (ℒ) is the set of cores involved

and rng (ℒ) is the set of actions performed by the step. Additionally, we use 𝑆 →∗ 𝑆′ to

abbreviate a sequence of steps 𝑆
ℒ1−−→ 𝑆1

ℒ2−−→ 𝑆2 … 𝑆𝑛
ℒ𝑛−−→ 𝑆′, and ℒ < ℒ ′ to show that

ℒ appears before ℒ ′ in the sequence, e.g. ℒ1 < ℒ2 in the previous example. Note that

in the rest of this document we refer to sequences of state transitions as DJC executions.

Actions: The JMM abstracts thread operations as actions [70, §5.1]. An action is a

tuple ⟨𝑟𝑡, 𝑘, 𝑟.𝑓 , 𝑢⟩, where 𝑟𝑡 is the thread performing the action; 𝑘 is the kind of action;

𝑣 is the (runtime) variable, monitor, or thread, involved in the action; and 𝑢 is a unique,

among the actions, identifier.

To get the set of actions 𝐴𝐷, from a program’s DJC execution trace 𝑆 →∗ 𝑆′, we take

the union of the ranges rng (ℒ𝑖), formally:

𝐴𝐷 = ⋃
∀

ℒ
−→∈→∗

rng (ℒ)

Program order ≤𝑑
𝑝𝑜 is a relation on 𝐴𝐷 defining a total order over all the actions exe-

cuted by any single thread.

JDMM uses 𝑥 ≤𝑑
𝑝𝑜 𝑦 to show that 𝑥 comes before 𝑦 according to the program order.

Every pair of actions executed by a single thread 𝑡 are ordered by the program order:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ ((𝑥 ≠ 𝑦) ∧ (𝑥.𝑡 = 𝑦.𝑡)) ⇔ ((𝑥 ≤𝑑
𝑝𝑜 𝑦) ∨ (𝑦 ≤𝑑

𝑝𝑜 𝑥))

In DJC, ≤𝑑
𝑝𝑜 can be obtained by the order in which actions appear in the execution.

Formally, given a DJC execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶ (𝛼.𝑡 = 𝛼′.𝑡 ∧ ℒ < ℒ ′) ⇒ 𝛼 ≤𝑑
𝑝𝑜 𝛼′

151

Appendix A. JDMM Formal Definitions and DJC F. Zakkak

Cache order ≤𝑑
𝑐𝑜 is a relation on 𝐴𝐷 defining a total order over all cache and memory

access actions acting on a single cache. We use 𝑥 ≤𝑑
𝑐𝑜 𝑦 to show that 𝑥 and 𝑦 act on

the same cache, and that 𝑥 comes before 𝑦 according to the cache order. Note that in

implementations with private per thread caches the cache order is equal to the program

order.

In DJC, ≤𝑑
𝑐𝑜 can be obtained by the order in which actions performed by the same core

appear in the execution. Note that, as we argue in Appendix B the operational semantics

of DJC do not allow a single core to perform more than one action in a single step.

Formally, given a DJC execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀(𝑐 ↦ 𝛼) ∈ ℒ ∶ ∀(𝑐 ↦ 𝛼′) ∈ ℒ ′ ∶

(𝛼.𝑘, 𝛼′.𝑘 ∈ {Iv ,F ,B ,R,W ,Vr ,Vw} ∧ ℒ < 𝑠𝑙𝑎𝑏𝑒𝑙𝑠′) ⇒ 𝛼 ≤𝑑
𝑐𝑜 𝛼′

Synchronization order ≤𝑑
𝑠𝑜 is a relation on 𝐴𝐷 defining a global order among all syn-

chronization actions in 𝐴𝐷

JDMM uses 𝑥 ≤𝑑
𝑠𝑜 𝑦 to show that 𝑥 comes before 𝑦 according to the synchronization

order. Every pair of synchronization actions are ordered by synchronization order:

∀𝑥, 𝑦 ∈ SA(𝐴𝐷) ⇔ ((𝑥 ≤𝑑
𝑠𝑜 𝑦) ∨ (𝑦 ≤𝑑

𝑠𝑜 𝑥))

In DJC, ≤𝑑
𝑠𝑜 can be obtained by the order in which synchronization action appears in the

execution. Formally, given a DJC execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶

(𝛼 ∈ SA(𝐴𝐷) ∧ 𝛼′ ∈ SA(𝐴𝐷) ∧ ℒ < ℒ ′) ⇒ 𝛼 ≤𝑑
𝑠𝑜 𝛼′

Since synchronization order is a global order, it must be defined for synchronization ac-

tions performed in the same step as well. Note that as long as the synchronization

actions performed in the same step do not form a synchronizes-with pair their order

does not impact the happens-before order which is the one describing which read a

write may observe. In Appendix B we argue that DJC’s operational semantics do not

allow both actions of a synchronization-with pair to be performed in a single step. As a

result, the order of any synchronization actions performed in a single step is not impor-

tant regarding the correctness and the well-formedness of an execution, thus it can be

chosen arbitrarily. In this work we arbitrarily order such synchronization actions accord-

ing to the ID of the core that performed them, formally:

∀
ℒ
−→∈→∗∶ ∀(𝑐 ↦ 𝛼), (𝑐′ ↦ 𝛼′) ∈ ℒ ∶ (𝛼 ∈ SA(𝐴𝐷) ∧ 𝛼′ ∈ SA(𝐴𝐷) ∧ 𝑐 < 𝑐′) ⇒ 𝛼 ≤𝑑

𝑠𝑜 𝛼′

152

F. Zakkak

Cache-action seen function Ai , returns the write or fetch action that cached the data
seen by a read, in 𝐴𝐷. Note that Cs(𝑟) ≤𝑑

𝑐𝑜 𝑟 and Cs(𝑟).𝑘 ∈ {W ,F}.

In DJC, Cs(⟨𝑟𝑡,R, 𝑟.𝑓 , 𝑢′⟩) returns the write or fetch action ⟨𝑟𝑡,W or F , 𝑟.𝑓 , 𝑢⟩ writing or

fetching the value that ⟨𝑟𝑡,R, 𝑟.𝑓 , 𝑢′⟩ sees, according to the execution.

Write-back fetched function Bf , returns the write-back action that whose data each
fetch action fetches, in 𝐴𝐷. Note that Bf (𝑓) ≤𝑑

𝑠𝑜 𝑓 and Bf (𝑓).𝑘 = B .

In DJC, Bf (⟨𝑟𝑡,F , 𝑟.𝑓 , 𝑢′⟩) returns the write-back action ⟨𝑟𝑡,B , 𝑟.𝑓 , 𝑢⟩ writing-back the

value that ⟨𝑟𝑡,F , 𝑟.𝑓 , 𝑢′⟩ fetches, according to the execution.

Action-written-back function Ab returns the write action whose data each write-back
writes back, in 𝐴𝐷. Note that Ab(𝑏) ≤𝑑

𝑐𝑜 𝑏 and Ab(𝑏).𝑘 ∈ {Iv ,W ,Vw}.

In DJC, Ab(⟨𝑟𝑡,B , 𝑟.𝑓 , 𝑢′⟩) returns the initialization or write action ⟨𝑟𝑡, Iv or W , 𝑟.𝑓 , 𝑢⟩ that
writes the data, that the action ⟨𝑟𝑡,B , 𝑟.𝑓 , 𝑢′⟩ writes back, according to the execution.

Note, that in DJC we exclude volatile writes from the possible kind of actions returned

by Ab, since volatile writes are never written back by a separate write-back action, they
are immediately written to the heap.

Action-invalidated function Ai , returns the write or fetch action that cached the data
invalidated by each invalidation action, in 𝐴𝐷. Note that Ai (𝑖) ≤𝑑

𝑐𝑜 𝑝 and Ai (𝑖).𝑘 ∈
{W ,F}.

In DJC, Ai (⟨𝑟𝑡, Iv , 𝑟.𝑓 , 𝑢′⟩) returns the write or fetch action ⟨𝑟𝑡,W or F , 𝑟.𝑓 , 𝑢⟩ writing or

fetching the value that ⟨𝑟𝑡, Iv , 𝑟.𝑓 , 𝑢′⟩ invalidates, according to the execution. Note that in
DJC instead of write actions the function returns write-back actions, since write actions

update the write buffer, which cannot be invalidated, and write-back actions update the

values in the object cache, removing the corresponding entries from the write buffer.

Synchronizes-with order ≤𝑑
𝑠𝑤 is a relation on 𝐴𝐷 defining which actions in 𝐴𝐷 syn-

chronize with each other.

JDMM uses 𝑥 ≤𝑑
𝑠𝑤 𝑦 to show that 𝑥 synchronizes-with 𝑦.

In DJC, given any execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶ ℒ < ℒ ′

⇒ (𝛼 and 𝛼′ can form a synchronizes with pair ⇔ 𝛼 ≤𝑑
𝑠𝑤 𝛼′)

153

Appendix A. JDMM Formal Definitions and DJC F. Zakkak

Happens-before order ≤𝑑
ℎ𝑏 is a relation on 𝐴𝐷 that defines a partial order among

actions in 𝐴𝐷.

The happens-before notion is the one introduced by Lamport in [57]. In the context of

the JMM this is the transitive closure of the program order and the synchronizes-with

order. JDMM uses 𝑥 ≤𝑑
ℎ𝑏 𝑦 to show that 𝑥 happens-before 𝑦.

Well-Formed Distributed Execution:

JDMMdefines well-formed executions similarly to the JMM. In this paragraphwe present

the formal well-formedness rules for JDMMand define their equivalents DJCwell-formedness

rules. Specifically, in JDMM, a distributed execution 𝐸𝐷 is well-formed when:

WF-1 Each read of a variable 𝑣 sees a write to 𝑣:

∀𝑟 ∈ 𝐴𝐷 ∶ ∃𝑦 ∈ 𝐴𝐷 ∶ (𝑊 (𝑟) = 𝑦)

Note that the original formal definition in JDMM [103, §3] is:

∀𝑥 ∈ 𝐴𝐷 ∶ (𝑥.𝑘 = 𝑅) ⇒ ∃𝑦 ∈ 𝐴𝐷 ∶ (𝑊 (𝑥) = 𝑦)

where volatile reads are not considered. However, JMM [72, §4.4] states that “For

all reads 𝑟 ∈ 𝐴, we have 𝑊 (𝑟) ∈ 𝐴 and 𝑊 (𝑟).𝑣 = 𝑟.𝑣. The variable 𝑟.𝑣 is volatile if

and only if 𝑟 is a volatile read, and the variable 𝑤.𝑣 is volatile if and only if 𝑤 is a

volatile write. ”, where to our understanding 𝑤 refers to 𝑊 (𝑟), and 𝑟 refers to both

volatile and non-volatile reads. As a result, in this work, we chose to take volatile

reads into account as well.

In DJC, this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 ∈ {R,Vr}

⇒ ∃
ℒ ′

−−→∈→∗∶ ∃𝛼′ ∈ rng (ℒ ′) ∶ 𝛼′.𝑘 ∈ {Iv ,W , 𝑎𝑉 𝑤} ∧ 𝛼.𝑣 = 𝛼′.𝑣

WF-2 All reads and writes of volatile variables are volatile actions:

∀𝑥 ∈ 𝐴𝐷 ∶ 𝑥.𝑘 ∈ {Vw ,Vr} ⇒ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑘 ∈ {𝑅, 𝑊 }) ∧ (𝑥.𝑣 = 𝑦.𝑣)

In DJC, this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 ∈ {Vr ,Vw} ⇔ 𝛼.𝑣 is volatile

154

F. Zakkak

WF-3 The number of synchronization actions preceding another synchronization action

𝑦 is finite:

∀𝑦 ∈ SA(𝐴𝐷) ∶ #{𝑥 ∈ SA(𝐴𝐷) ∶ 𝑥 ≤𝑑
𝑠𝑜 𝑦} < ∞

In DJC, this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∑

∀
ℒ ′

−−→∈→∗∶ℒ ′<ℒ

#{𝛼 ∶ 𝛼 ∈ rng (ℒ ′) ∧ 𝛼 ∈ SA(𝐴𝐷)} < ∞

WF-4 Synchronization order is consistent with program order:

∀𝑥, 𝑦 ∈ 𝐴𝐷 ∶ ((𝑥.𝑡 = 𝑦.𝑡) ∧ (𝑥 ≤𝑑
𝑠𝑜 𝑦)) ⇒ (𝑥 ≤𝑑

𝑝𝑜 𝑦)

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶

(𝛼 ≠ 𝛼′ ∧ 𝛼, 𝛼′ ∈ SA(𝐴𝐷)) ⇒ (𝛼 ≤𝑑
𝑠𝑜 𝛼′ ⇒ 𝛼 ≤𝑑

𝑝𝑜 𝛼′)

WF-5 Lock operations are consistent with mutual exclusion.

The number of lock actions performed on the monitor 𝑚 by any thread 𝑡′ before,

according to the synchronization order, the lock action 𝑙 performed by thread 𝑡 on
the monitor 𝑚 must be equal to the number of unlock actions performed by thread

𝑡′ before 𝑙 on the monitor 𝑚:

∀𝑥 ∈ 𝐴𝐷 ∶ ∀𝑡 ∈ 𝑇 ∶ (𝑥.𝑘 = 𝐿) ∧ (𝑥.𝑡 ≠ 𝑡)
⇒ #{𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑡 = 𝑡) ∧ (𝑦.𝑘 = 𝐿) ∧ (𝑦.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑑

𝑠𝑜 𝑥)}
= #{𝑧 ∈ 𝐴𝐷 ∶ (𝑧.𝑡 = 𝑡) ∧ (𝑧.𝑘 = 𝑈) ∧ (𝑧.𝑣 = 𝑥.𝑣) ∧ (𝑦 ≤𝑑

𝑠𝑜 𝑥)}

where 𝑇 is the set of all the execution threads:

𝑇 = {𝑡 ∶ (∃𝑥 ∈ 𝐴𝐷 ∶ 𝑡 = 𝑥.𝑡)}

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝑡 ∈ 𝑇 ∶ (𝑡 ≠ 𝛼.𝑡 ∧ 𝛼.𝑘 = L)

⇒ ∑
∀

ℒ′
−−→∈→∗∶ℒ ′<ℒ

#{𝛼′ ∶ 𝛼′ ∈ rng (ℒ ′) 𝛼′.𝑘 = L ∧ 𝛼′.𝑡 = 𝑡}

= ∑
∀

ℒ ″
−−→∈→∗∶ℒ ″<ℒ

#{𝛼″ ∶ 𝛼″ ∈ rng (ℒ ″) 𝛼″.𝑘 = U ∧ 𝛼″.𝑡 = 𝑡}

155

Appendix A. JDMM Formal Definitions and DJC F. Zakkak

WF-6 The execution obeys intra-thread consistency.

∀𝑟 ∈ 𝐴𝐷 ∶ (¬(𝑟 ≤𝑑
𝑝𝑜 𝑊 (𝑟)) ∧ ∄𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑

𝑝𝑜 𝑤 ≤𝑑
𝑝𝑜 𝑟))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 ∈ {R,Vr} ⇒ (¬(𝛼 ≤𝑑

𝑝𝑜 𝑊 (𝛼))

∧ ∀
ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼.𝑘 ∈ {W ,Vw}) ∧ (𝛼.𝑣 = 𝛼′.𝑣) ∧ (𝑊 (𝑟) ≤𝑑
𝑝𝑜 𝑤 ≤𝑑

𝑝𝑜 𝑟))

WF-7 The execution obeys synchronization order consistency.

JMM states that “Synchronization order consistency says that (i) synchronization

order is consistent with program order and (ii) each read 𝑟 of a volatile variable 𝑣
sees the last write to 𝑣 to come before it in the synchronization order” [72, §3.2].

The first condition is satisfied if and only if WF-4 is satisfied, so JDMM examines

only the second condition inWF-7.

∀𝑟 ∈ 𝐴𝐷 ∶ (𝑟.𝑘 = Vr) ⇒ (¬(𝑟 ≤𝑑
𝑠𝑜 𝑊 (𝑟))

∧ ∄𝑤′ ∈ 𝐴𝐷 ∶ (𝑤′.𝑘 = Vw) ∧ (𝑤′.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑
𝑠𝑜 𝑤′ ≤𝑑

𝑠𝑜 𝑟))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = Vr ⇒ (¬(𝛼 ≤𝑑

𝑠𝑜 𝑊 (𝛼))

∧ ∀
ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼.𝑘 = Vw) ∧ (𝛼.𝑣 = 𝛼′.𝑣) ∧ (𝑊 (𝑟) ≤𝑑
𝑠𝑜 𝑤 ≤𝑑

𝑠𝑜 𝑟))

WF-8 The execution obeys happens-before consistency:

∀𝑟 ∈ 𝐴𝐷 ∶ (¬(𝑟 ≤𝑑
ℎ𝑏 𝑊 (𝑟)) ∧ ∄𝑤′ ∈ 𝐴𝐷 ∶ (𝑤′.𝑣 = 𝑟.𝑣) ∧ (𝑊 (𝑟) ≤𝑑

ℎ𝑏 𝑤′ ≤𝑑
ℎ𝑏 𝑟))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ (𝛼.𝑘 ∈ {R,Vr}) ⇒ (¬(𝛼 ≤𝑑

ℎ𝑏 𝑊 (𝛼))

∧ ∀
ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼.𝑘 ∈ {W ,Vw}) ∧ (𝛼.𝑣 = 𝛼′.𝑣) ∧ (𝑊 (𝑟) ≤𝑑
ℎ𝑏 𝑤 ≤𝑑

ℎ𝑏 𝑟))

156

F. Zakkak

WF-9 Every thread’s start action happens-before its other actions except for initializa-

tion actions:

∀𝑥, 𝑦, 𝑧 ∈ 𝐴𝐷 ∶ ((𝑧.𝑘 ∉ {𝑆, In}) ∧ (𝑥.𝑘 = In) ∧ (𝑦.𝑘 = 𝑆)) ⇒ (𝑥 ≤𝑑
ℎ𝑏 𝑦 ≤𝑑

ℎ𝑏 𝑧)

JMM states that“The write of the default value (zero, false or null) to each variable

synchronizes-with to the first action in every thread. Although it may seem a lit-

tle strange to write a default value to a variable before the object containing the

variable is allocated, conceptually every object is created at the start of the pro-

gram with its default initialized values. Consequently, the default initialization of

any object happens-before any other actions (other than default writes) of a pro-

gram.” [72, §4.3]

As a result, in DJC we assume that in the starting state of a program’s execution

trace all the variables used in that trace are already initialized and written back

to the main memory, i.e, all of them fit in the memory and are initialized to zero.

Since in this work we do not examine allocation techniques and garbage collec-

tion, this assumption does not interfere with our implementation’s proof of adher-

ence to JDMM. We essentially model a JVM that initializes the heap at boot and

does not perform any garbage collections during the execution, which is actually

how our JVM works when garbage collection is turned off. To be consistent with

the JDMM requirements about the ordering of initialization actions we define the

beginning of every execution trace in DJC to be 𝑆𝑖𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡, where →∗ contains

only transitions performing the initialization actions and their write-backs, for every

variable in the execution trace, and 𝑆𝑖𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡 is well-formed—each initialization

happens-before its write-back.

WF-10 Every read is preceded, according to cache order, by a write or fetch action,

acting on the same variable as the read:

∀𝑟 ∈ 𝐴𝐷 ∶ ∃𝑥 ∈ 𝐴𝐷 ∶ 𝑥 ≤𝑑
𝑐𝑜 𝑟 ∧ 𝑥.𝑣 = 𝑟.𝑣 ∧ 𝑥.𝑘 ∈ {W ,F}

In DJC given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀(𝑐 ↦ 𝛼) ∈ ℒ ∶ 𝛼.𝑘 = R

⇒ ∃
ℒ ′

−−→∈→∗∶ ∃(𝑐 ↦ 𝛼′) ∈ ℒ ′ ∶ (ℒ ′ < ℒ ∧ 𝛼.𝑣 = 𝛼′.𝑣 ∧ 𝛼′.𝑘 ∈ {W ,F})

Note that in the DJC definition ofWF-10 we do not include volatile accesses. This

is justified by the fact that in DJC volatile reads access the heap directly, which

can be seen as fetching, reading, and invalidating the variable in a single step.

As a result, in DJC there is no other action before a volatile read that caches the

variable. However, we still comply to the JDMM since we conceptually pack a fetch

in the volatile read itself, meaning that every volatile read is indeed preceded by

a (conceptual) fetch.

157

Appendix A. JDMM Formal Definitions and DJC F. Zakkak

WF-11 There is no invalidation, update, or overwrite of a variable’s cached value be-

tween the action that cached it and the read that sees it. Formally:

∀𝑟, 𝑥 ∈ 𝐴𝐷 ∶ (𝑥 = Cs(𝑟))
⇒ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑦.𝑘 ∈ {Iv ,F ,W }) ∧ (𝑥.𝑣 = 𝑦.𝑣) ∧ (𝑥 ≤𝑑

𝑐𝑜 𝑦 ≤𝑑
𝑐𝑜 𝑟)

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = R ⇒ ∀

ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼′.𝑘 ∈ {Iv ,F ,W } ∧ 𝛼.𝑣 = 𝛼′.𝑣 ∧ Cs(𝛼) ≤𝑑
𝑐𝑜 𝛼′ ≤𝑑

𝑐𝑜 𝛼)

Note that, as we explain for WF-10, we do not take in account volatile accesses

and do not require a program order between the actions, instead we require that

the actions are performed by the same core 𝑐.

WF-12 Fetch actions are preceded by at least one write-back of the corresponding

variable.

For a value to be fetched, it must first be written to the main memory. The only

way to write to the main memory, by definition, is through a write-back. Formally:

∀𝑓 ∈ 𝐴𝐷, ∃𝑏 ∈ 𝐴𝐷 ∶ 𝑏 = Bf (𝑓)

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = F

⇒ ∃
ℒ ′

−−→∈→∗∶ ∃𝛼′ ∈ rng (ℒ ′) ∶ (𝛼′.𝑘 = B ∧ 𝛼.𝑣 = 𝛼′.𝑣 ∧ 𝛼′ ≤𝑑
𝑐𝑜 𝛼)

WF-13 Write-back actions are preceded by at least one write to the corresponding vari-

able.

For a variable to be written back, it must be dirty in some cache; a cached copy

becomes dirty only when written. Formally:

∀𝑏 ∈ 𝐴𝐷 ∶ ∃𝑤 ∈ 𝐴𝐷 ∶ (𝑏.𝑣 = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑐𝑜 𝑏)

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = B

⇒ ∃
ℒ ′

−−→∈→∗∶ ∃𝛼′ ∈ rng (ℒ ′) ∶ (𝛼′.𝑘 = W ∧ 𝛼.𝑣 = 𝛼′.𝑣 ∧ 𝛼′ ≤𝑑
𝑐𝑜 𝛼)

158

F. Zakkak

WF-14 There are no other writes to the same variable between a write and its write-

back. Formally:

∀𝑏, 𝑤 ∈ 𝐴𝐷 ∶ (𝑤 = Ab(𝑏)) ⇒ ∄𝑤′ ∈ 𝐴𝐷 ∶ ((𝑤′.𝑣. = 𝑤.𝑣) ∧ (𝑤 ≤𝑑
𝑐𝑜 𝑤′ ≤𝑑

𝑐𝑜 𝑏))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = B

⇒ ∀
ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶ (𝛼.𝑣 = 𝛼′.𝑣 ∧ 𝛼′.𝑘 = W ∧ Ab(𝛼) ≤𝑑
𝑐𝑜 𝛼′ ≤𝑑

𝑐𝑜 𝛼)

Note that, as in WF-10 and WF-11, we do not take in account volatile accesses

and do not require a program order between the actions, instead we require that

the actions are performed by the same core 𝑐.

WF-15 Only cached variables are invalidated.

Invalid cached data cannot be invalidated. Formally:

∀𝑝 ∈ 𝐴𝐷 ∶ ∃𝑥 ∈ 𝐴𝐷 ∶ ∄𝑝′ ∈ 𝐴𝐷 ∶ (Ai (𝑝) = 𝑥) ∧ (Ai (𝑝) = Ai (𝑝′))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = Iv ⇒ (∃

ℒ ′

−−→∈→∗∶ ∃𝛼′ ∈ rng (ℒ ′) ∶

𝛼′ = Ai (𝛼) ∧ ∀
ℒ ″

−−→∈→∗∶ ∄𝛼″ ∈ rng (ℒ ″) ∶ (𝛼″.𝑘 = Iv ∧ Ai (𝛼″) = Ai (𝛼)))

WF-16 Reads that see writes acting on a different cache are preceded, according to

cache order, by a fetch action that fetches the data of the corresponding write,

which were written back, and there is no other write-back of the corresponding

variable happening between the write-back and the fetch, according to synchro-

nization order. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ ¬ (W (𝑟) ≤𝑑
𝑐𝑜 𝑟)

⇒ ∃𝑏, 𝑓 ∈ 𝐴𝐷 ∶ (Ab(𝑏) = W (𝑟) ∧ Bf (𝑓) = 𝑏 ∧ 𝑓 ≤𝑑
𝑐𝑜 𝑟

∧ (∄𝑏′ ∶ 𝑏′.𝑣 = 𝑏.𝑣 ∧ 𝑏 ≤𝑑
𝑠𝑜 𝑏′ ≤𝑑

𝑠𝑜 𝑓))

159

Appendix A. JDMM Formal Definitions and DJC F. Zakkak

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀(𝑐 ↦ 𝛼) ∈ ℒ ∶ ∀(𝑐′ ↦ 𝛼′) ∈ ℒ ′ ∶ (W (𝛼) = 𝛼′ ∧ 𝑐 ≠ 𝑐′)

⇒ ∃
ℒ𝑓
−−→,

ℒ𝑏−−→∈→∗∶ ∃𝛼𝑓 ∈ rng (ℒ𝑓) ∶ ∃𝛼𝑏 ∈ rng (ℒ𝑏) ∶

Ab(𝛼𝑏) = W (𝛼) ∧ Bf (𝛼𝑓) = 𝛼𝑏 ∧ ∀
ℒ ′

𝑏−−→∈→∗∶
∄𝛼′

𝑏 ∈ rng (ℒ ′
𝑏) ∶ 𝛼𝑏 ≠ 𝛼′

𝑏 ∧ Ab(𝛼′
𝑏) = W (𝛼)

Note that, as in WF-10, WF-11, and WF-14 we do not take in account volatile

accesses and do not require a program order between the actions, instead we

require that the corresponding actions are performed by the same core 𝑐.

WF-17 Volatile writes are immediately written back, in the sense that no other action

happens between the volatile write and its write-back, according to the program

order. Formally:

∀𝑤 ∈ 𝐴𝐷 ∶ (𝑤.𝑘 = Vw)

⇒ ∃𝑏 ∈ 𝐴𝐷 ∶ ∄𝑥 ∈ 𝐴𝐷 ∶ ((𝑤 = Ab(𝑏)) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑏))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = Vw

⇒ ∃
ℒ𝑏−−→∈→∗∶ ∃𝛼𝑏 ∈ rng (ℒ𝑏) ∶ ∀

ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼 = Ab(𝛼𝑏) ∧ 𝛼 ≤𝑑
𝑝𝑜 𝛼′ ≤𝑑

𝑝𝑜 𝛼𝑏)

WF-18 A fetch of the corresponding variable happens immediately before each volatile

read, in the sense that no other action happens between the corresponding fetch

and the volatile read, according to the program order. Formally:

∀𝑟 ∈ 𝐴𝐷 ∶ (𝑟.𝑘 = Vr) ⇒ ∃𝑓 ∈ 𝐴𝐷 ∶ ∄𝑥 ∈ 𝐴𝐷 ∶ (𝑓 = Cs(𝑟)) ∧ (𝑓 ≤𝑑
𝑝𝑜 𝑥 ≤𝑑

𝑝𝑜 𝑟))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ 𝛼.𝑘 = Vr

⇒ ∃
ℒ𝑓
−−→∈→∗∶ ∃𝛼𝑓 ∈ rng (ℒ𝑓) ∶ ∀

ℒ ′

−−→∈→∗∶ ∄𝛼′ ∈ rng (ℒ ′) ∶

(𝛼𝑓 = Cs(𝛼) ∧ 𝛼𝑓 ≤𝑑
𝑝𝑜 𝛼′ ≤𝑑

𝑝𝑜 𝛼)

160

F. Zakkak

WF-19 Initialization writes are immediately written back. Formally:

∀𝑥 ∈ 𝐴𝐷 ∶ (𝑥.𝑘 = In) ⇒ ∃𝑏 ∈ 𝐴𝐷 ∶ ∄𝑦 ∈ 𝐴𝐷 ∶ (𝑏 = Ab(𝑥)) ∧ (𝑏 ≤𝑑
𝑝𝑜 𝑦 ≤𝑑

𝑝𝑜 𝑥))

In DJC this rule is always satisfied, since as we explain in WF-9 we define the

beginning of every execution trace in DJC to be 𝑆𝑖𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡 where →∗ contains

only transitions performing the initialization actions and their write-backs, for every

variable in the execution trace. As a result, in every execution trace initialization

actions are immediately written back.

WFE-1 There is a corresponding fetch or write action between thread migration and

every read action. Formally:

∀𝑚, 𝑟 ∈ 𝐴𝐷 ∶ ((𝑚.𝑘 = M) ∧ (𝑚 ≤𝑑
𝑝𝑜 𝑟)) ⇒ ∃𝑥 ∈ 𝐴𝐷 ∶ ((𝑥 = Cs(𝑟)) ∧ (𝑚 ≤𝑑

𝑐𝑜 𝑥 ≤𝑑
𝑐𝑜 𝑟))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶

(𝛼.𝑘 = M ∧ 𝛼′.𝑘 = R ∧ 𝛼 ≤𝑑
𝑝𝑜 𝛼′) ⇒ ∃

ℒ𝑓
−−→∈→∗∶ ∃𝛼𝑓 ∈ rng (ℒ𝑓) ∶

𝛼𝑓 = Cs(𝛼′) ∧ 𝛼 ≤𝑑
𝑝𝑜 𝛼𝑓 ≤𝑑

𝑝𝑜 𝛼′

Note that, as in WF-10, WF-11, WF-14, and WF-16 we do not take in account

volatile accesses.

WFE-2 At migration, there are no dirty data at the old core. Formally:

∀𝑚, 𝑤 ∈ 𝐴 ∶ ((𝑚.𝑘 = M) ∧ (𝑤 ≤𝑑
𝑝𝑜 𝑚)) ⇒ ∃𝑏 ∈ 𝐴 ∶ ((𝑤 = Ab(𝑏)) ∧ (𝑤 ≤𝑑

𝑐𝑜 𝑏 ≤𝑑
𝑐𝑜 𝑚))

In DJC this means that given the execution 𝑆 →∗ 𝑆′:

∀
ℒ
−→,

ℒ ′

−−→∈→∗∶ ∀𝛼 ∈ rng (ℒ) ∶ ∀𝛼′ ∈ rng (ℒ ′) ∶

(𝛼.𝑘 = W ∧ 𝛼′.𝑘 = M ∧ 𝛼 ≤𝑑
𝑝𝑜 𝛼′) ⇒ ∃

ℒ𝑏−−→∈→∗∶ ∃𝛼𝑏 ∈ rng (ℒ𝑏) ∶
𝛼 = Ab(𝛼𝑏) ∧ 𝛼 ≤𝑑

𝑝𝑜 𝛼𝑏 ≤𝑑
𝑝𝑜 𝛼′

161

Appendix B.

Proof sketch of adherence to JDMM

In this appendix we sketch the proof of adherence of DJC to JDMM. To achieve this we

show that its operational semantics generates only well-formed, according to JDMM, ex-

ecutions. That is, given any well-formed execution𝑆 →∗ 𝑆′, as described in Appendix A,

we show that any execution 𝑆 →∗ 𝑆′ ℒ
−→ 𝑆″ is well-formed as well. In our reasoning we

use a number of lemmas that we argue to be true for any DJC execution. A few of these

lemmas are shown to be true, by induction, along with the well-formedness rules, thus

wemark those lemmaswithWFH-X and skip the arguing about their correctness for now.

WFH-1: For every non-volatile variable 𝑟.𝑓 that appears in the execution, it is present in

ℋ if and only if its value in ℋ is the one written back by the last, according to synchro-

nization order, write-back action, acting on 𝑟.𝑓, in that execution.

WFH-2: For every non-volatile variable 𝑟.𝑓 that appears in the execution, it is present in

𝒞 (𝑐) if and only if its value in 𝒞 (𝑐) is the one fetched or written back by the last fetch or

write-back action in that execution, which acts on 𝑟.𝑓 and is performed by 𝑐.

WFH-3: For every non-volatile variable 𝑟.𝑓 that appears in the execution, it is present

in 𝒟(𝑐) if and only if its value in 𝒟(𝑐) is the one written by the last write action in that

execution, which acts on 𝑟.𝑓 and is performed by 𝑐.

WFH-4: For every object 𝑟 that appears in the execution, if it is present in the object

cache, then there exists at least one fetch action that placed it there.

WFH-5: For every variable 𝑟.𝑓, that appears in the heap or the caches, the value stored
in them is the result of a write to 𝑟.𝑓.

WFH-6: For every volatile variable 𝑟.𝑓 in ℋ, its value is the one written by the last, ac-

cording to synchronization order, volatile write action, acting on it, in that execution, or

the value written back by the write-back action of the initialization action, acting on it, if

163

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

there are no volatile write actions, acting on it, in that execution.

WFH-7: At each execution step, each thread is assigned to a single core , if and only if

it is spawned. Formally:

∀(ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇
ℒ
−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑇 ′) ∈ 𝑆 →∗ 𝑆′ ∶ ∀𝑟𝑡 ∈ dom (ℋ ′) ∶

ℋ ′(𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, spawned⟩ ⟺ (∃𝑐⟨𝑟𝑡,_⟩ ∈ 𝑇 ′ ∶ ∄𝑐′⟨𝑟𝑡,_⟩ ∈ 𝑇 ′ ∶ 𝑐 ≠ 𝑐′)

WFH-8: Each thread appears only on a single set of threads in a pair of set of threads.

Formally:

∀(ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇1 ∥ 𝑇2
ℒ
−→ ℋ ′; 𝒞 ′; 𝒟 ′ ⊢ 𝑇 ′

1 ∥ 𝑇 ′
2) ∈ 𝑆 →∗ 𝑆′ ∶

∀𝑟𝑡 ∈ dom (ℋ ′) ∶ ℋ ′(𝑟𝑡) = ⟨𝐶, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑓 ↦ 𝑣, spawned⟩
⇒ (∀_⟨𝑟𝑡,_⟩ ∈ 𝑇 ′

1 ⇒ ∄_⟨𝑟𝑡,_⟩ ∈ 𝑇 ′
2) ∧ (∀_⟨𝑟𝑡,_⟩ ∈ 𝑇 ′

2 ⇒ ∄_⟨𝑟𝑡,_⟩ ∈ 𝑇 ′
1)

WFH-9: The contents of the object cache and the write buffer of each core are altered

only by that core.

WFH-10 DJC’s operational semantics does not allow the execution of both synchroniza-

tion actions of a synchronizes-with pair in the same step.

Having presented theWFH-X lemmas we continue with the rest of the lemmas.

Lemma 1. Initialization actions happen-before every thread’s start action.

Argument. Satisfied for every execution by the definition of the beginning of every ex-

ecution in DJC to be 𝑆𝐼𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡 (see WF-9 in Appendix A), where →∗ contains only

transitions performing the initialization actions and their write-backs, for every variable

in the execution.

Lemma 2 (WF-12). Fetch actions are preceded by at least one write-back of the corre-

sponding variable.

Argument. In DJC this rule is always satisfied, since the beginning of every execution

in DJC is 𝑆𝑖𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡 where →∗ contains only transitions performing the initialization

actions and their write-backs, for every variable in the execution.

Lemma 3 (WF-17). Volatile writes are immediately written back.

Argument. Satisfied by the definition of VolatileWrite that writes the variable directly to

the heap.

164

F. Zakkak

Lemma 4 (WF-18). A fetch of the corresponding variable happens immediately before

each volatile read.

Argument. Satisfied by the definition of VolatileRead that reads the variable directly

from the heap.

Lemma 5 (WF-19). Initializations are immediately written back and their write-backs are

completed before the start of any thread.

Argument. In DJC this rule is always satisfied, since the beginning of every execution

in DJC is 𝑆𝑖𝑛𝑖𝑡 →∗ 𝑆′
𝑖𝑛𝑖𝑡 where →∗ contains only transitions performing the initialization

actions and their write-backs, for every variable in the execution. As a result, in every

execution initialization actions are written back and their write-backs are completed be-

fore the start of any thread.

Lemma 6. DJC’s local operational semantics generates only well-formed executions.

Argument. We show, by induction on the number of steps, that for each well formed

execution 𝑆 →∗ 𝑆′, 𝑆 →∗ 𝑆′ ℒ
−→ 𝑆″, where →∗ and

ℒ
−→ contain reductions of the local

operational semantics, is also well-formed.

RulesCtxStep, IfTrue, IfFalse, Let, Call, Join, Interrupt, InterruptedT, and InterruptedF

regard the control flow of the program and are of no interest, since it is trivial to show that

they preserve the well-formedness of the execution. Additionally, for each case we omit

well-formedness rules that do not correlate with the transition at hand, e.g., we do not

argue about WF-2 if the rule at hand does not act on a volatile variable. Furthermore,

we do not argue aboutWF-4,WF-7 andWF-8, since in the local operational semantics

the happens-before order is equivalent to the program order, since the creation of new

threads is not possible. As a result,WF-4,WF-7 andWF-8 are also satisfied ifWF-6 is

satisfied. Similarly we do not argue about WF-16 and WFE-1-WFE-2, since in the lo-

cal operational semantics it is not possible to spawn new threads or migrate the main

thread, thus all the transitions are performed by a single core.

Base case: Any execution

𝑆𝑖𝑛𝑖𝑡 →∗ ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩
ℒ
−→ 𝑆′

is well-formed.

In DJC the execution starts with a single thread –the main thread– and the beginning of

any execution is:

𝑆𝑖𝑛𝑖𝑡 →∗ ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩

165

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

where →∗ contains only transitions performing the initialization actions and their write-

backs, for every variable in the heap ℋ, and

𝑆𝑖𝑛𝑖𝑡 →∗ ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩

is well-formed.

In the local operational semantics,

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝛼
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

the only rule that can step, after the initialization, is Start.

WF-3 is satisfied, since this is the first synchronization action, other than initialization

actions, in the execution and the number of initialization actions is equal to the number

of variables, in a program, which we assume to be finite.

WF-9 is satisfied by Lemma 1 and the fact that the action at hand is a start action and

is the first action, other than initialization and write-backs, in the program.

WFH-1 andWFH-6 are satisfied since any variables in the heap are initialized and writ-

ten back only once.

WFH-2–WFH-4 are satisfied since there are no variables in the the object cache, or the

write buffer.

WFH-5 is satisfied since any variables in the heap are initialized and written back.

WFH-7 is satisfied, since initially there only exists a single thread, the main thread, that

starts in a single core.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

As a result, the lemma is true for the first transition of any program.

Inductive step: Given a well-formed execution 𝑆 →∗ 𝑆′, 𝑆 →∗ 𝑆′ ℒ
−→ 𝑆″ is also well-

formed.

We examine each case for 𝑆′ ℒ
−→ 𝑆″ in the local operational semantics:

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝛼
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩

and show that it satisfies the well-formedness rules.

166

F. Zakkak

Case 6.1. Field

𝑆 →∗ 𝑆′ 𝑐↦⟨𝑟𝑡,R,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

where 𝑟.𝑓 ∉ dom (𝒟) and 𝑆′ = ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩.

By the premises of Field:

𝑟 ∈ dom (ℋ) ∧ ¬volatile (𝑣.𝑓) ∧ 𝒞 (𝑟.𝑓) = 𝑣

WF-1: Since the value of 𝑟.𝑓 is read from the object cache and 𝑆 →∗ 𝑆′ is well formed,

according to WFH-5 that value will be the result of a write action, acting on 𝑟.𝑓, that is
performed by a transition in the execution. As a result,WF-1 is satisfied.

WF-6: Since 𝑟.𝑓 is present in the object cache and 𝑆 →∗ 𝑆′ is well formed and accord-

ing toWFH-2, it was either fetched or updated through a write-back. In both cases, since

𝑆 →∗ 𝑆′ is well formed, according toWFH-1 andWFH-2, respectively, the cached value

will be that of the last write-back in the execution. Additionally, according to WF-20 the

happens-before order between two writes is consistent with the happens-before order

of their write-backs, meaning that the cached value will be that of the last write in the

execution. That said,WF-6 is satisfied.

WF-10: Since 𝑆 →∗ 𝑆′ is well formed and 𝒞 (𝑟.𝑓) = 𝑣, according toWFH-4, there exists

a transition 𝑆𝑓
𝑐↦⟨_,F ,𝑟,𝑢𝑓⟩
−−−−−−−−−→ 𝑆′

𝑓 in 𝑆 →∗ 𝑆′. As a result,WF-10 is also satisfied.

WF-11: Since the value of 𝑟.𝑓 is read from the object cache and 𝑆 →∗ 𝑆′ is well formed,

according to WFH-2 that value will be the result of the last fetch or write-back action,

acting on 𝑟.𝑓, that is performed by a transition in the execution. As a result, there are

no updates or overwrites of the cached value between between the value that cached it

and the read that sees it. An invalidation of 𝑟.𝑓 between the last, in the execution, fetch

or write-back action, that cached 𝑟.𝑓, and the read, would result in the premises of Field

not being satisfied, since the object cache would not contain a value for 𝑟.𝑓. As a re-

sult there is also no invalidation of the variable’s cached value between the action that

cached it and the read that sees it. As a result,WF-11 is satisfied.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.2. FieldDirty

167

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

𝑆 →∗ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,R,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

where 𝑟.𝑓 ∈ dom (𝒟).

By the premises of FieldDirty:

𝑟 ∈ dom (ℋ) ∧ ¬volatile (𝑣.𝑓) ∧ 𝒞 (𝑟.𝑓) = 𝑣′

WF-1: Since the value of 𝑟.𝑓 is read from the write buffer and 𝑆 →∗ 𝑆′ is well formed,

according to WFH-5 that value will be the result of a write action, acting on 𝑟.𝑓, per-
formed by a transition in the execution. As a result,WF-1 is satisfied.

WF-6: Since the value of 𝑟.𝑓 is read from the write buffer and 𝑆 →∗ 𝑆′ is well formed,

according to WFH-3 that value will be the result of the last write action, acting on 𝑟.𝑓,
that is performed by a transition in the execution. As a result,WF-6 is satisfied.

WF-11: Since the value is read from the write buffer and 𝑆 →∗ 𝑆′ is well formed, ac-

cording toWFH-3 that value will be the result of the last write action, acting on 𝑟.𝑓, that
is performed by a transition in the execution. As a result, there are no updates or over-

writes of the cached value between between the value that cached it and the read that

sees it. Additionally, an invalidation of 𝑟.𝑓 (possible through WriteBack) between the

last, in the execution, write action that added 𝑟.𝑓 to the write buffer and the read would

result in the premises of FieldDirty not being satisfied, since the write buffer would not

contain a value for 𝑟.𝑓. As a result there is also no invalidation of the variable’s cached

value between the action that cached it and the read that sees it. As a result,WF-11 is

satisfied.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.3. Assign

𝑆 →∗ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,W ,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−→ ℋ ; 𝒞 ; 𝒟 ′ ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

where 𝒟 ′ = 𝒟[𝑟.𝑓 ↦ 𝑣].

By the premises of Assign:

𝑟 ∈ dom (ℋ) ∧ ¬volatile (𝑣.𝑓)

168

F. Zakkak

WFH-3 andWFH-5 are satisfied since the new value of 𝑟.𝑓 in the write buffer is the one

written by the write action of the last transition in the execution.

WFH-9 is satisfied, since the new value is added to the write buffer of the core perform-

ing the action.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.4. New

WFH-1,WFH-5, andWFH-6 are satisfied since the values of the new object’s variables

in the heap are those of the last write-back to these variables, namely the write-back of

their initialization.

WFH-2–WFH-3 are satisfied since they are satisfied in 𝑆 →∗ 𝑆′ and New does not mod-

ify the object cache, or the write buffer.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.5. VolatileReadL

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and VolatileReadL requires 𝑟.𝑓 .𝑙 to be

free before acquiring it.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileReadL

does not modify any variables in the heap, only the synthetic lock of the volatile variable

at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.6. VolatileRead

𝑆 →∗ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒⟩
𝑐↦⟨𝑟𝑡,Vr ,𝑟.𝑓 ,𝑢⟩
−−−−−−−−−−−→ ℋ ′; 𝒞 ; 𝒟 ⊢ 𝑐⟨𝑟𝑡, 𝑒′⟩

where

𝑟 ∈ dom (ℋ) ∧ ℋ (𝑟.𝑓 .𝑙) = 𝑟𝑡 ∧ 𝒞 = ∅ ∧ 𝒟 = ∅ ∧ ℋ ′ = ℋ [𝑟.𝑓 .𝑙 ↦ 0] ∧ ℋ (𝑟.𝑓) = 𝑣

169

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

WF-1: Since the value of 𝑟.𝑓 is read from the heap and 𝑆 →∗ 𝑆′ is well formed, accord-

ing toWFH-6 that value will be the result of the last volatile write action, acting on 𝑟.𝑓, in
that execution, or by the initialization action, acting on 𝑟.𝑓, if there are no volatile write

actions, acting on 𝑟.𝑓, in that execution. As a result,WF-1 andWF-6 are satisfied.

WF-2 is satisfied since in 𝑆 →∗ 𝑆′ all volatile variables where accessed by volatile ac-

tions according toWF-2 and the volatile read at hand is also a volatile action.

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the synthetic lock of the volatile variable

at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.7. VolatileWriteL

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and VolatileWriteL requires 𝑟.𝑓 .𝑙 to be

free before acquiring it.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the synthetic lock of the volatile variable

at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.8. VolatileWrite

WF-2 is satisfied since in 𝑆 →∗ 𝑆′ all volatile variables where accessed by volatile ac-

tions according toWF-2 and the volatile write at hand is also a volatile action.

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

170

F. Zakkak

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and VolatileWrite requires 𝑟.𝑓 .𝑙 to be

acquired by the thread performing the action to release it.

WFH-1 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and VolatileWrite does not modify

any non-volatile variables in the heap.

WFH-5 andWFH-6 are satisfied since the new value of 𝑟.𝑓 in the heap is the one written

by the volatile write action of the last transition in the execution.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.9. MonitorEnter

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and MonitorEnter requires that the

monitor 𝑟.𝑙 is free before acquiring it.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the monitor of the object at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.10. NestedMonitorEnter

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and NestedMonitorEnter requires that

the monitor 𝑟.𝑙 is already acquired by the thread performing the action in order to re-

acquire it.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the monitor of the object at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

171

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

Case 6.11. MonitorExit

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WF-5 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ andMonitorExit requires that the mon-

itor 𝑟.𝑙 is already acquired a single time by the thread performing the action in order to

release it.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the monitor of the object at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.12. NestedMonitorExit

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WF-5 is satisfied, since it is satisfied in 𝑆 →∗ 𝑆′ and NestedMonitorExit requires that

the monitor 𝑟.𝑙 is already acquired more than one time by the thread performing the ac-

tion in order to decrease by one the acquisitions by that thread.

WFH-1,WFH-5, andWFH-6 are satisfied since it is satisfied in𝑆 →∗ 𝑆′ andVolatileWriteL

does not modify any variables in the heap, only the monitor of the object at hand.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.13. Acquire

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.14. Release

172

F. Zakkak

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.15. Fetch

WF-1: Since 𝑟 and its variables are fetched from the heap and 𝑆 →∗ 𝑆′ is well formed,

according toWFH-1 for each variable 𝑟.𝑓 in 𝑟 its value is the one written back by the last
write-back action, acting on 𝑟.𝑓, in that execution. As a result,WF-12 is satisfied.

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it is finite.

WFH-2 and WFH-4 are satisfied since the value of 𝑟.𝑓 in the object cache is the one

fetched from the last fetch action in the execution.

WFH-9 is satisfied, since the fetch value is added to the object cache of the core per-

forming the action.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.16. WriteBack

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it is finite.

WF-13 and WF-14: Since 𝑟.𝑓 is written back from the write buffer and 𝑆 →∗ 𝑆′ is well

formed, according to WFH-3 its value in the write buffer is the one written by the last

write action in that execution, which acts on 𝑟.𝑓 and is performed by 𝑐. As a result,

WF-13 andWF-14 are satisfied.

WF-20: Since 𝑆 →∗ 𝑆′ is well-formed WF-20 is satisfied for any pair of writes and the

corresponding pair of their write-backs in it. As a result, we examine the cases where

the second write 𝑤 of the pair is the last write in the trace, which the write-back 𝑏 at hand
writes back. Given any pair of write and write-back actions 𝑤′ and 𝑏′ in 𝑆 →∗ 𝑆′ (if there

exists one), where 𝑤′ ≤𝑑
ℎ𝑏 𝑤, according to WF-14 the write-back action 𝑏′ writing back

𝑤′ can only appear between the two writes 𝑤′ ≤𝑑
ℎ𝑏 𝑏′ ≤𝑑

ℎ𝑏 𝑤. Additionally, we know that

173

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

𝑤 ≤𝑑
𝑝𝑜 𝑏. As a result, 𝑤′ ≤𝑑

ℎ𝑏 𝑏′ ≤𝑑
ℎ𝑏 𝑤 ≤𝑑

ℎ𝑏 𝑏 which satisfiesWF-20.

WFH-1 is satisfied since the value of 𝑟.𝑓 in the heap is the one written back by the last

write-back action in the execution.

WFH-2 is satisfied since the value of 𝑟.𝑓 in the object cache is the one written back by

the last write-back action in the execution trace.

WFH-3 andWFH-5 are satisfied sinceWriteBack just removes 𝑟.𝑓 from the write buffer

and does not introduce or restore another value in its place.

WFH-9 is satisfied, since the value is moved from the write buffer, of the core perform-

ing the action, to the object cache of the same core.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.17. Invalidate

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it is finite.

WF-15 is satisfied, since the first premise of Invalidate requires that the object being

invalidated is present in the object cache. As a result, only cached variables are invali-

dated.

WFH-2 and WFH-5 are satisfied since Invalidate just removes a value from the object

cache and does not introduce or restore another value in its place.

WFH-9 is satisfied, since the value is removed from the object cache of the core per-

forming the action.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 6.18. Start

174

F. Zakkak

WF-3 is satisfied, since 𝑆 →∗ 𝑆′ is well formed and according to WF-3 the number of

synchronization actions in it are finite.

WF-9 is satisfied by Lemma 1 and the fact that in the local operational semantics there

is no way to step to the start expression. The only start exception in the program is that

of the main thread in the initial state.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

DJC’s local operational semantics generates only well-formed executions.

Lemma 7. Lifting a well-formed execution from the local operational semantics to the

global operational semantics preserves the well-formedness of the execution.

Argument. In DJC the lifting is performed by Lift. Lift does not introduce new modifi-

cations to the memory state or new actions in the execution, other than those performed

by the local operational semantics. As a result, since according to Lemma 6 the lo-

cal operational semantics only generates well formed executions, lifting it to the global

operational semantics preserves its well-formedness.

Theorem 1. DJC’s operational semantics generates only well-formed execution traces.

Argument. We show, by induction on the number of steps, that for each well formed

execution 𝑆 →∗ 𝑆′, 𝑆 →∗ 𝑆′ ℒ
−→ 𝑆″, where →∗ and → are reductions of the global

operational semantics, is also well-formed.

For each case we omit well-formedness rules that do not correlate with the transition at

hand, e.g., we do not argue aboutWF-2 in the case of Spawn since it does not act on a

volatile variable.

Base case: Any execution 𝑆
ℒ
−→ 𝑆′, is well-formed.

In DJC the execution starts with a single thread –the main thread– and the beginning of

any execution is:

𝑆𝑖𝑛𝑖𝑡 →∗ ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩

where →∗ contains only transitions performing the initialization actions and their write-

backs, for every variable in the execution, and

𝑆𝑖𝑛𝑖𝑡 →∗ ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩

175

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

is well-formed.

As a result, 𝑆 = ℋ ; ∅; ∅ ⊢ 𝑐⟨𝑟𝑚𝑎𝑖𝑛, start⟩

In the global operational semantics,

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇

the interesting cases are Lift and Migrate. Spawn cannot step since its premises are

not satisfied. Blocked does not change the state and for ParG there is no other thread

in the context to step.

Case 1.1. Lift

In the case of Lift, the well-formedness of the execution is preserved according to

Lemma 7.

Case 1.2. Migrate

In the case ofMigrate the main thread is transferred to another core. The memory state

remains as before and all well-formedness rules are satisfied.

WFE-2 is satisfied by Migrate’s premises —there are no data in the write buffer.

WFH-7: Since 𝑆 →∗ 𝑆′ is well formed and satisfies WFH-7, the thread at hand is

spawned. Migrate transfers the thread at hand to a new core and resigns it from its

previous core complying toWFH-7. As a result,WFH-7 is satisfied.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

As a result, the theorem is true for the first transition of any program.

Inductive step: Given a well-formed execution 𝑆 →∗ 𝑆′, 𝑆 →∗ 𝑆′ ℒ
−→ 𝑆″ is also well-

formed.

We examine each case in the global operational semantics:

ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇
ℒ
−→ ℋ ; 𝒞 ; 𝒟 ⊢ 𝑇

and show that it satisfies the well-formedness rules.

Case 1.3. Lift

In the case of Lift, the well-formedness of the execution is preserved according to

Lemma 7.

Case 1.4. Spawn

176

F. Zakkak

WF-4: Since 𝑆 →∗ 𝑆′ is well formed, according to WF-4, synchronization order is con-

sistent with program order. The action at hand is placed after, according to the program

order and the synchronization order, any actions in 𝑆 →∗ 𝑆′. As a result the synchro-

nization order remains consistent with the program order andWF-4 is satisfied.

WFH-7 andWFH-8: The spawned thread is assigned to a single core and the old thread

remains assigned to its core. The spawned thread also gets marked as spawned in

order to forbid future re-spawns of the same thread (first and second premise of Spawn).

As a result,WFH-7 andWFH-8 are satisfied, since they are also satisfied in 𝑆 →∗ 𝑆′.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 1.5. Migrate

WFE-2 is satisfied since it is satisfied in 𝑆 →∗ 𝑆′ and in the new transition is satisfied

by Migrate’s premises —there are no data in the write buffer.

WFH-7: Since 𝑆 →∗ 𝑆′ is well formed and satisfies WFH-7, the thread at hand is

spawned. Migrate transfers the thread at hand to a new core and resigns it from its

previous core complying toWFH-7. As a result,WFH-7 is satisfied.

The rest of the rules are omitted since they do not correlate with the transition at hand

and thus it is trivial to show that they are satisfied.

Case 1.6. Blocked

In the case of Blocked all well formed rules are satisfied since they where satisfied in

𝑆 →∗ 𝑆′ and Blocked does not introduce any state modifications or new actions in the

execution trace.

Case 1.7. ParG

WF-1: Since 𝑆 →∗ 𝑆′ is well-formed,WF-1 andWFH-5 are true for it.

In the case of non-volatile reads the read of a variable 𝑟.𝑓 sees the value written in

the object cache or the write buffer of the core that performs the action (see Field and

FieldDirty), which according to WFH-5 is the result of a write to 𝑟.𝑓. Since the object

caches and the write buffers of different cores are disjointWF-1 andWFH-5 are true for

the unions of the object caches and the write buffers as well.

In the case of volatile reads the read of a volatile variable 𝑟.𝑓 sees the value written

in the heap (see VolatileRead), which according to WFH-5 is the result of a write to

𝑟.𝑓. By induction on the eighth premise of ParG, only one core may modify the heap.

Since VolatileRead modifies it, then there are no writes to the heap executed in parallel

with VolatileRead and the latter will see the last write to 𝑟.𝑓, according toWFH-6, since

𝑆 →∗ 𝑆′ is well-formed. As a result,WF-1 is satisfied.

177

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

WF-2: By induction on the eighth and ninth premise of ParG, every thread steps through

the Lift, Spawn, orMigrate. According to Lemma 7 every step performed by Lift is well

formed and thus satisfiesWF-2. Spawn and Migrate do not act on volatile variables, so

they always preserveWF-2. As a resultWF-2 is satisfied.

WF-3: Since 𝑆 →∗ 𝑆′ is well-formed,WF-3,WFH-7, andWFH-8 are true for it, as a con-

sequence, the number of spawned threads in the system is finite, since the spawn action

is a synchronization action. Additionally byWFH-7 each spawned thread is assigned to

a single core and by WFH-8 each thread appears only on a single set of threads. As a

result, the number of synchronization actions that can be performed in parallel is bound

by the number of the spawned threads in the system. As a result,WF-3 is satisfied.

WF-4: Since 𝑆 →∗ 𝑆′ is well-formed, WF-4, WFH-7, and WFH-8 are true for it. By

WFH-7 each spawned thread is assigned to a single core and by WFH-8 each thread

appears only on a single set of threads. As a result, a thread may not step in parallel

with itself, and any action is appended to the program order. However, in the case of

synchronization actions, 𝐹, 𝐼, J , and Ird may step in parallel with other synchronization

actions, so they are not actually ordered with those actions. Nevertheless, any arbitrary

ordering of them does not break the consistency of the synchronization order with the

program order, since only a single action maybe performed by each thread in every

transition. As a result,WF-4 is satisfied.

WF-5: Since 𝑆 →∗ 𝑆′ is well-formed, WF-5 is true for it. Additionally, only a single lock

operation may be performed at any parallel transition, since lock operations modify the

heap and according to the eighth and ninth premises of ParG only one set of threads is

allowed to modify it. By induction on the eighth premise we conclude that only a single

thread may modify the heap, through Lift. Since according to Lemma 7 Lift preserves

the well-formedness,WF-5 is satisfied by ParG as well.

WF-6: Since 𝑆 →∗ 𝑆′ is well-formed, WF-6, WFH-7, and WFH-8 are true for it. By

WFH-7 each spawned thread is assigned to a single core and by WFH-8 each thread

appears only on a single set of threads. As a result, a thread may not step in parallel

with itself, and any action is appended to the program order. By induction on the eighth

and ninth premise of ParG, every thread steps through the Lift, Spawn, or Migrate. Ac-

cording to Lemma 7 every step performed by Lift is well formed and thus satisfiesWF-6.

Spawn and Migrate do not perform any reads, so they always satisfyWF-6.

WF-7: By induction on the eighth and ninth premise of ParG, every thread steps through

the Lift, Spawn, orMigrate. According to Lemma 7 every step performed by Lift is well

formed and thus satisfies WF-7. Spawn and Migrate do not correspond to volatile ac-

tions, so they always preserve WF-7. Additionally, by induction on the eighth premise

178

F. Zakkak

of ParG, only one core may modify the heap. Since volatile actions modify it, then there

are no other volatile actions executed in parallel with VolatileRead and the latter will see

the last write to 𝑟.𝑓, according to WFH-6, since 𝑆 →∗ 𝑆′ is well-formed. As a result,

WF-7 is satisfied.

WF-8: The happens-before order is the transitive closure of the synchronizes-with order

and the program order.

As we show for WF-6, since 𝑆 →∗ 𝑆′ is well-formed, WF-6, WFH-7, and WFH-8 are

true for it. By WFH-7 each spawned thread is assigned to a single core and by WFH-8

each thread appears only on a single set of threads. As a result, a thread may not step

in parallel with itself, and any action is appended to the program order.

Regarding the synchronizes-with order, we examine each pair and show that both ac-

tions of a pair can not step in parallel. Note that we omit the last pair regarding finalization

and the constructor of the object, since we do not model finalization in our semantics.

• In ≤𝑑
𝑠𝑤 𝑆: According to Lemma 1 initialization actions are performed before the

start of the program.

• Vw ≤𝑑
𝑠𝑤 Vr : Since both Vw and Vr modify the heap they cannot step in parallel.

By induction on the eighth premise of ParG, only one core may modify the heap.

• 𝑈 ≤𝑑
𝑠𝑤 𝐿: Since both 𝑈 and 𝐿 modify the heap they cannot step in parallel. By

induction on the eighth premise of ParG, only one core may modify the heap.

• Sp ≤𝑑
𝑠𝑤 𝑆: Since both Sp and 𝑆 modify the heap they cannot step in parallel. By

induction on the eighth premise of ParG, only one core may modify the heap.

• Fi ≤𝑑
𝑠𝑤 𝐽: Since Fi modifies the heap and 𝐽 reads it, although they are allowed

to step in parallel by ParG, the third premise of Join would not be satisfied, as a

result they never step in parallel.

• Ir ≤𝑑
𝑠𝑤 Ird : Since Ir modifies the heap and Ird reads it, although they are allowed

to step in parallel by ParG, the third premise of InterruptedTwould not be satisfied,

as a result they never step in parallel.

As a result,WF-8 is satisfied.

WF-9: According to Lemma 1 every initialization action in the execution happens-before

the start of the program. Additionally, since 𝑆 →∗ 𝑆′ is well-formed, WF-9 is true for

it and start actions modify the heap to mark the thread as started. By induction on

the eighth premise of ParG, only one core may modify the heap. As a result, there

can only be a single start action in a parallel transition and that will be evaluated by Lift

that according to Lemma 7 preserves the well-formedness of the execution. That is, in

the execution preceding the transition at hand all thread actions where ordered after the

179

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

start action of the corresponding thread according to the happens-before order. Addi-

tionally, the same is true for the local execution of the core that starts the thread. As

a result the only case that remains to be examined is that of running a start action in

parallel with another action of that thread. Since 𝑆 →∗ 𝑆′ is well-formed,WF-6,WFH-7,

andWFH-8 are true for it. ByWFH-7 each spawned thread is assigned to a single core

and byWFH-8 each thread appears only on a single set of threads. As a result, a thread

may not step in parallel with itself, and any action is appended to the program order. As

a resultWF-9 is satisfied.

WF-10: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate, and specifically reads step through Lift. According

to Lemma 7 every step performed by Lift is well formed and thus satisfies WF-10. As

a result, there is a write or fetch action, acting on the same variable as the read, earlier

in the execution.

WF-11: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate, and specifically reads step through Lift. According

to Lemma 7 every step performed by Lift is well formed and thus satisfiesWF-11. As a

result for each non-volatile read there is no invalidation, update, or overwrite of the vari-

able’s value between the read and fetch or write that cached it. By WFH-7 on 𝑆 →∗ 𝑆′

each spawned thread is assigned to a single core, byWFH-8 each thread appears only

on a single set of threads, and byWFH-9 the contents of the object cache and the write

buffer of each core are altered only by that core. As a result, since WF-9 holds by Lift

it is also true for the whole transition, since the core performing the read is the only that

can alter the object cache and the write buffer, and it cannot perform another action in

parallel with itself (first premise of ParG), to invalidate, update, or overwrite the value.

WF-12: See Lemma 2.

WF-13: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate, and specifically write-backs step through Lift.

According to Lemma 7 every step performed by Lift is well formed and thus satisfies

WF-13. As a result, there is a write, to the corresponding variable being written back,

earlier in the execution.

WF-14: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate, and specifically write-backs step through Lift. Ac-

cording to Lemma 7 every step performed by Lift is well formed and thus satisfies

WF-14. By WFH-14 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core,

byWFH-8 each thread appears only on a single set of threads, and byWFH-9 the con-

tents of the object cache and the write buffer of each core are altered only by that core.

As a result, since WF-14 holds by Lift it is also true for the whole transition, since the

180

F. Zakkak

core performing the write-back is the only that can alter the object cache and the write

buffer and it cannot perform a write action in parallel with itself (first premise of ParG).

WF-15: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate, and specifically invalidations step through Lift.

According to Lemma 7 every step performed by Lift is well formed and thus satisfies

WF-15. By WFH-15 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core, by

WFH-8 each thread appears only on a single set of threads, and by WFH-9 the con-

tents of the object cache and the write buffer of each core are altered only by that core.

As a result, since WF-15 holds by Lift it is also true for the whole transition, since the

core performing the invalidation is the only that can alter the object cache and the write

buffer and it cannot perform an invalidation action in parallel with itself (first premise of

ParG).

WF-16: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate, and specifically reads step through Lift. According

to Lemma 7 every step performed by Lift is well formed and thus satisfies WF-15. By

WFH-16 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core, byWFH-8 each

thread appears only on a single set of threads, and byWFH-9 the contents of the object

cache and the write buffer of each core are altered only by that core. As a result, since

WF-16 holds by Lift it is also true for the whole transition, since the core performing the

read is the only that can alter the object cache and the write buffer and it cannot perform

a write-back action in parallel with itself (first premise of ParG).

WF-17: See Lemma 3.

WF-18: See Lemma 4.

WF-19: See Lemma 5.

WF-20: By WF-20 on 𝑆 →∗ 𝑆′ we know that the happens-before order between two

writes is consistent with the happens-before order of their write-backs. As a result we

only need to examine new write-back actions. By induction on the eighth premise of

ParG, only one core may modify the heap. As a result there can only be one write-back

in the transition at hand, which cannot break the happens before order consistency. As

a resultWF-20 is satisfied.

WFE-1: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate, and specifically reads step through Lift. According

to Lemma 7 every step performed by Lift is well formed and thus satisfiesWFE-1. That

181

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

is, there is a corresponding fetch action between thread migration and every read ac-

tion performed by the core that the corresponding thread migrated to. As a result, only

the parallel evaluation of a migration and a read action could break this rule. However,

since those two actions should be performed by the same thread this is not possible. By

WFH-7 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core, and by WFH-8

each thread appears only on a single set of threads, and byWFH-9 the contents of the

object cache and the write buffer of each core are altered only by that core. As a result,

sinceWFE-1 holds by Lift it is also true for the whole transition, since the core perform-

ing the read is the only that can step the thread at hand and it cannot perform another

action in parallel with itself (first premise of ParG).

WFE-2: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate, and specifically migrations step through Migrate.

WFE-2 is satisfied by the premises of Migrate. That is, at migration actions there are

no dirty data at the old core, in the two transitions in isolation. As a result, only the par-

allel evaluation of a migration and a write action at the old core could break this rule.

However, since those two actions should be performed by the same thread this is not

possible. ByWFH-7 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core, and

byWFH-8 each thread appears only on a single set of threads, and byWFH-9 the con-

tents of the object cache and the write buffer of each core are altered only by that core.

As a result, since WFE-2 holds by Migrate it is also true for the whole transition, since

the core performing the migration is the only that can step the thread at hand and it can-

not perform another action in parallel with itself (first premise of ParG).

WFH-1: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate, and specifically write-backs step through Lift. Ac-

cording to Lemma 7 every step performed by Lift is well formed and thus satisfies

WFH-1. Since 𝑆 →∗ 𝑆′ is well-formed we also know that it satisfies WFH-1 as well.

As a result we only need to examine new write-back actions. By induction on the eighth

premise of ParG, only one core may modify the heap, thus there can only be one write-

back in the transition at hand. As a resultWFH-1 is satisfied.

WFH-2: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate structural rules. Specifically fetches and write-backs

step through Lift. According to Lemma 7 every step performed by Lift is well formed

and thus satisfies WFH-2. By WFH-7 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to

a single core, and by WFH-8 each thread appears only on a single set of threads, and

byWFH-9 the contents of the object cache and the write buffer of each core are altered

only by that core. As a result, since WFH-2 is true for the single step it is also true for

the whole transition, since the core performing the fetch or write-back is the only that

can modify the object cache and it cannot perform another action in parallel with itself

182

F. Zakkak

(first premise of ParG).

WFH-3: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, orMigrate, and specifically writes step through Lift. According

to Lemma 7 every step performed by Lift is well formed and thus satisfies WFH-3. By

WFH-7 on 𝑆 →∗ 𝑆′ each spawned thread is assigned to a single core, and by WFH-8

each thread appears only on a single set of threads, and byWFH-9 the contents of the

object cache and the write buffer of each core are altered only by that core. As a result,

since WFH-3 is true for the single step it is also true for the whole transition, since the

core performing the write is the only that can modify the write buffer and it cannot per-

form another action in parallel with itself (first premise of ParG).

WFH-4: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate. According to Lemma 7 every step performed by

Lift is well formed and thus satisfiesWFH-4. Spawn andMigrate are of no interest since

they do not alter the object cache. As a result, WFH-4 is also satisfied in the whole

transition since it is satisfied by every step in the transition.

WFH-5: By induction on the eighth and ninth premise of ParG, every thread steps

through the Lift, Spawn, or Migrate. According to Lemma 7 every step performed by

Lift is well formed and thus satisfiesWFH-4. Spawn andMigrate are of no interest since

they do not alter the values of any variables. As a result,WFH-5 is also satisfied in the

whole transition since it is satisfied by every step in the transition.

WFH-6: Since 𝑆 →∗ 𝑆′ is well-formed we also know that it satisfiesWFH-6 as well. As

a result we only need to examine new volatile writes. By induction on the eighth premise

of ParG, only one core may modify the heap, thus there can only be one volatile write

in the transition at hand. As a resultWFH-6 is satisfied

WFH-7 andWFH-8: Since 𝑆 →∗ 𝑆′ is well-formed we also know that it satisfiesWFH-7

and WFH-8 as well. As a result we only need to examine new spawns. By induction

on the eighth premise of ParG, only one core may modify the heap, thus there can only

be one spawn in the transition at hand. By induction on the eighth premise of ParG, we

see that a spawn can only step through Spawn. The spawned thread is assigned to a

single core and the old thread remains assigned to its core. The spawned thread also

gets marked as spawned in order to forbid future re-spawns of the same thread (first

and second premise of Spawn). As a result,WFH-7 andWFH-8 are satisfied, since they

are also satisfied in 𝑆 →∗ 𝑆′.

183

Appendix B. Proof sketch of adherence to JDMM F. Zakkak

WFH-9: Since WFH-9 is satisfied by 𝑆 →∗ 𝑆′ we examine how the current transition

alters object caches and write buffers. By induction on the eighth and ninth premise of

ParG, we see that all actions altering the object caches and write buffers are evaluated

by Lift. According to Lemma 7 every step performed by Lift is well formed and thus

satisfiesWFH-9. SinceWFH-9 is satisfied by Lift, it is also true for the whole transition,

since the object caches and write buffers are disjoint.

184

	Acknowledgements
	Abstract
	Περίληψη
	List of Figures
	List of algorithms
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Background and State of the Art
	2.1 Emerging Processor Architectures
	2.1.1 Intel Runnemede
	2.1.2 Formic
	2.1.3 EUROSERVER Architecture
	2.1.4 Assumptions About Future Processors

	2.2 Java Virtual Machines
	2.2.1 Java/DSM
	2.2.2 Hyperion
	2.2.3 cJVM
	2.2.4 JESSICA2
	2.2.5 CellVM
	2.2.6 Hera-JVM

	3 The Memory Model
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Approach

	3.2 The formalization of JMM
	3.2.1 Definitions
	3.2.2 Validation procedure:
	3.2.3 JMM Guarantees

	3.3 The Distributed Model
	3.3.1 The JDMM's Abstract Machine Memory Model
	3.3.2 The Java Distributed Memory Model
	3.3.3 No Local Caching Optimization
	3.3.4 Context Switching and Cache Sharing
	3.3.5 Thread Migration
	3.3.6 Garbage Collection
	3.3.7 Final Fields
	3.3.8 Direct Transfers Across Local Memories

	3.4 On JDMM's adherence to JMM
	3.5 On JDMM's expressiveness over JMM
	3.5.1 Causality Tests
	3.5.2 Code optimization: Reordering

	3.6 Case Study

	4 Designing a JVM for hundreds of incoherent cores
	4.1 Key Challenges
	4.1.1 Memory Management
	4.1.2 Synchronization
	4.1.3 Thread Scheduling

	4.2 Design
	4.2.1 Memory Management
	4.2.2 Synchronization
	4.2.3 Thread Scheduling

	5 ComfortaagDivSquawk: 512 Cores, 512 Memories, 1 JVM
	5.1 Formic-Cube's architecture overview
	5.2 Base Virtual Machine
	5.3 Implementation
	5.3.1 Memory Management
	5.3.2 Software Cache
	5.3.3 Thread Scheduling
	5.3.4 Java Monitors and The Synchronization Manager
	5.3.5 Volatile Variables
	5.3.6 Liveness Detection

	5.4 Evaluation
	5.4.1 Software Cache Impact
	5.4.2 Scheduling
	5.4.3 Synchronization Manager
	5.4.4 Overall Scalability
	5.4.5 Overhead

	6 Distributed Java Calculus
	6.1 The Calculus
	6.1.1 Syntax
	6.1.2 Operational Semantics

	6.2 Proof Sketch

	7 Related work
	7.1 Memory Models
	7.2 Software Caching
	7.3 Java Virtual Machines

	8 Conclusions
	8.1 Further Work & Open Research Problems
	8.1.1 Machine-Checked Proofs
	8.1.2 Evaluation on Non-emulated Architectures With Coherent-islands
	8.1.3 State-of-the-art Core VM
	8.1.4 Garbage Collection
	8.1.5 java.util.concurrent
	8.1.6 Java Memory Model Update

	Bibliography
	A JDMM Formal Definitions and DJC
	B Proof sketch of adherence to JDMM

