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Abstract

Over the past decade, CPU development has focused mainly on multi-core archi-
tectures, and recent trends lead to multi-core designs with ever increasing numbers
of cores. In order to get the best out of a many-core system, one has to develop
efficient parallel applications. However, reasoning about synchronization, ordering
and conflicting memory accesses makes parallel programming difficult, error-prone
and hard to test, debug and maintain. Task-based programming models such as
OpenMP, Cilk, Sequoia. SvS, OoOJava and StarSs offer a more structured way of
expressing parallelism than threads, while some of them are able to automatically
infer parallelism and dependencies.

Despite their advantages, task-based programming models impose significant
challenges for the runtime system. Fine-grained tasks require efficient basic mech-
anisms for task management. Task management operations, such as initiation,
completion, queuing, and scheduling, in traditional parallel systems cost in the or-
der of tens of thousands of cycles, due to communication and memory management
overheads.

In this thesis, we present SCOOP (Source-level COmpiler Optimizations for
Parallelism), a C source-to-source compiler for task-based programming models
that use dataflow annotations. SCOOP extends C with dataflow annotations using
#pragma directives, like StarSs. SCOOP parses these annotations and produces
efficient C source code for task-parallel runtimes. SCOOP is also capable to infer
independent task arguments, enabling it to hint either the programmer or runtimes
that implement some kind of dynamic dependence analysis. We evaluate SCOOP’s
effectiveness on both symmetric multiprocessing (SMP) and the Cell Broadband
Engine architectures ,using a set of parallel benchmarks.





Περίληψη

Κατά την τελευταία δεκαετία, η ανάπτυξη κεντρικών μονάδων επεξεργασίας έχει

επικεντρωθεί κυρίως σε πολυπύρηνες αρχιτεκτονικές, και οι πρόσφατες τάσεις οδηγο-

ύν σε πολυπύρηνους επεξεργαστές με όλο και μεγαλύτερο αριθμό πυρήνων. Για να

εκμεταλλευτεί κανείς πλήρως ένα πολυπύρηνο σύστημα, πρέπει να αναπτύξει αποδο-

τικές παράλληλες εφαρμογές. Ωστόσο, η συλλογιστική σχετικά με το συγχρονισμό,

την σειρά εκτέλεσης και τις συγκρουόμενες προσβάσεις στην μνήμη καθιστά τον πα-

ράλληλο προγραμματισμό περίπλοκο, επιρρεπή σε λάθη και δύσκολο να δοκιμασθεί,

να διορθωθεί και να διατηρηθεί. Τα μοντέλα task-based προγραμματισμού όπως τα
OpenMP, Cilk, Sequoia. SVS, OoOJava και StarSs προσφέρουν έναν πιο δομημένο
τρόπο έκφρασης της παραλληλίας από ότι τα threads, ενώ κάποια από αυτά είναι σε
θέση να εξάγουν αυτόματα παραλληλισμό και να επιλύουν εξαρτήσεις.

Παρά τα πλεονεκτήματά τους, τα task-based μοντέλα προγραμματισμού προκα-
λούν σημαντικές προκλήσεις για το σύστημα εκτέλεσης (runtime). Τα tasks που
είναι fine-grained απαιτούν αποτελεσματικούς βασικούς μηχανισμούς για τη διαχείρι-
ση τους. ΄Ομως οι μηχανισμοί διαχείρισης tasks, όπως η αρχικοποίηση, η ολοκλήρωση,
η τοποθέτηση σε λίστες αναμονής, και ο χρονοπρογραμματισμός, σε παραδοσιακά πα-

ράλληλα συστήματα έχουν κόστος της τάξης των δεκάδων χιλιάδων κύκλων, που

οφείλεται στην επικοινωνία και τη διαχείριση μνήμης.

Στην παρούσα εργασία, παρουσιάζουμε τον SCOOP (Source-level COmpiler
Optimizations for Parallelism), έναν C source-to-source μεταγλωττιστή για task-
based μοντέλα προγραμματισμού που χρησιμοποιούν επισημειώσεις ροής δεδομένων
(dataflow annotations). Ο SCOOP επεκτείνει την C με επισημειώσεις ροής δεδο-
μένων χρησιμοποιώντας οδηγίες τύπου #pragma, όπως αυτές του StarSs. Ο SCOOP
αναλύει αυτές τις επισημειώσεις και παράγει αποδοτικό κώδικα C για task-parallel
runtimes. Ο SCOOP είναι επίσης σε θέση να συμπεράνει αν κάποιες παράμετροι
των task είναι ανεξάρτητες, ώστε να βοηθήσει είτε τον προγραμματιστή ή τα ρυντιμες
που εφαρμόζουν κάποιο είδος δυναμικής ανάλυσης εξαρτήσεων. Τέλος, αξιολογούμε

την αποτελεσματικότητά του SCOOP σε επεξεργαστές αρχιτεκτονικών symmetric
multiprocessing (SMP) και Cell Broadband Engine, χρησιμοποιώντας ένα σύνολο
παράλληλων προγραμμάτων, ως ορόσημα (benchmarks).
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Chapter 1

Introduction

In this thesis, we present SCOOP ( Source-level COmpiler Optimizations for
Parallelism ), a C source-to-source compiler for task-based programming models
that use dataflow annotations. Also we present an extension to task-based pro-
gramming models, region support. SCOOP extends C with dataflow annotations
using #pragma directives. SCOOP parses these annotations and produces C source
code for task-parallel runtimes. SCOOP is capable to infer independent arguments
using the Static Dependence Analysis Module, which can be used to hint either
the programmer or runtimes that implement some kind of dynamic dependence
analysis.

1.1 Motivation

Parallel programming involves mapping computations that can be done at the same
time onto many processing elements, as well as defining how these elements interact
and communicate.

The two main, explicitly parallel programming models used today are shared
memory and message passing. Shared memory requires programs to specify syn-
chronization information for memory accesses. Message passing on the other hand
requires programs to deal with data placement and communication buffer manage-
ment. Reasoning about the implicit thread interactions through shared memory
and manually controlling all synchronization, as well as sending the appropriate
data and manually managing the buffer is difficult and error prone, resulting in
data races, deadlocks and other concurrency errors that are difficult to reproduce
and fix, due to the inherent nondeterminism of the two main parallel programming
models.

Early task-parallel programming models, such as Cilk [1] and OpenMP [2] raise
the level of abstraction for expressing parallelism, but still require explicit syn-
chronization. Statically prohibiting concurrent access to shared memory among
parallel tasks is too restrictive, as in many cases only a few instances of conflict-
ing tasks will actually conflict. For this reason, even existing statically verifiable,

1
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Figure 1.1: Overhead of running BDDT on a single core

non-dependent task models relax the requirement for strictly non-overlapping task
memory footprints. Instead, recent task-based programming models implement im-
plicit synchronization, using the memory footprint of every task, either inferred by
the system or declared by the programmer, to avoid concurrent accesses or achieve
fully deterministic execution [3, 4, 5, 6, 7].

Despite their advantages, task-based programming models impose significant
challenges for the runtime system. Fine-grained tasks require efficient basic mecha-
nisms for task management, as task initiation and completion now become common-
path operations. Task management operations, such as initiation, completion,
queuing, and scheduling, in traditional parallel systems costs are in the order of
tens of thousands of cycles, due to communication and memory management over-
heads.

Furthermore, dynamic dependence analysis incurs a high overhead compared to
hand-crafted synchronization; It requires a complex runtime system to manage and
track memory allocation, check for conflicts, and schedule parallel tasks. Often,
the runtime cost of checking for conflicts in pessimistic, or rolling back a task in
optimistic runtimes becomes itself a bottleneck, limiting the achievable speedup as
the processor count grows. Figure 1.1 compares the BDDT [6] runtime dependence
analysis when run on a single processor with running the sequential program, for
a set of benchmarks. On average, BDDT incurs an overhead of 33%. Along the
same lines, Best et al. [5] report overhead costs ranging from under 5% to over 40%
for the dynamic dependence analysis in SvS.

We believe that these overheads could be reduced by statically transforming the
applications source code and generating custom task management code to interact
with the runtime, while hinting it of arguments that can be ignored by the dynamic
dependence analysis.

1.2 Background

1.2.1 Runtimes

SCOOP is designed to generate code for task-based programming models. The
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notion of a task is general and can be interpreted in various ways. In our work
we consider a task to be a piece of code that can execute in parallel with other
tasks, as well as the data that it will access. SCOOP currently generates code for
two task-based programming models, TPC [8] and BDDT. In this work we focus
on the later as SCOOP code generation for the TPC runtime has been examined
previously in Foivos S. Zakkak’s BSc thesis [9].‘

We will now briefly discuss BDDT. BDDT is a task-parallel runtime system
that dynamically discovers and resolves task dependencies. SCOOP compiles task-
parallel programs to use the BDDT runtime for detecting dependencies and schedul-
ing parallel tasks deterministically. BDDT requires the programmer to specify the
memory footprint of every task as a set of input, output, or input-output effects on
memory address ranges or multidimensional array tiles. BDDT then uses a block-
based dependence analysis at customizable granularity, to detect possible overlap
in task footprints and enforces sequential program order on conflicting tasks.

BDDT uses a custom slab memory allocator to create a metadata element for
each allocated memory block. Due to the allocation policy, metadata elements are
accessible at constant time for every arbitrary memory address. Each metadata
element describes the most recent state of the memory block, tracking its version,
which changes every time the block is written. This allows for many-readers/one-
writer synchronization, equivalent to read-write locking. Metadata elements are
internally protected by fine-grain locks, as many threads may update the same
metadata concurrently when scheduling tasks. Using per-block metadata allocated
in the slab-allocator allows BDDT to schedule tasks operating at arbitrary memory
locations, common in a language with unrestricted pointer arithmetic such as C.
In addition, BDDT maintains per-task metadata, including

1. an atomic counter that tracks the number of unresolved dependencies

2. links to metadata elements describing all memory blocks in the task footprint

3. the task’s effect (read, write, read/write) on the data

Using the task and memory metadata, BDDT can detect task dependencies and
enforce sequential program order among conflicting tasks. Deciding if a memory
block causes a dependence ,has constant O(1) cost, and scheduling a task incurs
cost linear to the number of contiguous blocks in the task footprint. This makes
BDDT perform better than OpenMP in many programs, as dynamic dependence
analysis enables more parallelism than synchronization with barriers and locks.
However, although BDDT has been carefully optimized, this overhead becomes
significant in programs with fine-grain independent tasks, where dynamic checks
are always unnecessary, therefore limiting scalability and parallelism.

1.2.2 SDAM

StaticDependenceAnalysisModule [10] is a SCOOP extension that finds whether
task arguments should be treated as potential dependencies between tasks. To
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achieve this, it employees Locksmith’s [11] Points-to analysis, which implements
a type-based flow analysis to detect pointer aliasing. This method is a may alias
analysis, meaning that we cannot decide whether two pointers alias for sure, but
we can decide whether they don’t refer to the same memory address/variable. In
the later case, we can safely deduct that two arguments are independent. To make
the analysis more accurate, it uses the programmer’s dataflow annotations, and
allows concurrent reads.

1.2.3 Regions

Trends show that programs’ needs of space grow along with computer’s mem-
ory. Furthermore, many programs manage to totally allocate memory that exceeds
the size of the physical memory, sometimes resulting in memory swap, a rather
slow procedure. On early work in programming languages, stack-based memory
management was employed to address this problem. However there are still some
limitations related to dynamic structures, such as lists, hashtables etc. For stack-
based memory management to work, the size of a value must be known at the
beginning of a block structure, where the stack allocation is performed. Moreover
stack-based memory management requires that the lifetime of values stored in the
stack-allocated memory complies with the start and the end of the block structure.
However this is not always the case, many times the programmer wants some data
to stay alive even after the end of the block structure. In such cases the program-
mer uses malloc and free to explicitly manage the memory allocation. These
techniques require the programmer to know exactly when a block of memory does
not contain live variables and usually result in memory leaks.

Region-based memory management is a form of compile-time memory manage-
ment, well-known from the functional programming world. Region-based memory
management [12] is something between completely manual and completely auto-
matic memory management. We use an abstraction of this concept. In this work
each region is like a stack of unbounded size which grows, until the region in its
entirety is popped off the region stack.

With regions support in task-based programming models we can:

1. express complex task footprints

2. dynamically allocate or deallocate memory within tasks

3. reduce memory management overhead

4. reduce dependence analysis overhead

5. increase memory locality
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1.3 Related Work

1.3.1 Task parallelism

There are several programming models and runtime systems that support task
parallelism. We will now examine CellSs [13], SMPSs [14], OpenMP [2], Thread
Building Blocks [15], Cilk [1], and Sequoia [16].

Cell Superscalar (CellSs) addresses the automatic exploitation of the func-
tional parallelism of a sequential program through the different processing elements
of the Cell BE architecture. The focus in on the simplicity and flexibility of the
programming model. Based on a simple annotation of the source code, a source
to source compiler generates the necessary code and a runtime library exploits the
existing parallelism by building at runtime a task dependency graph. The runtime
takes care of the task scheduling and data handling between the different proces-
sors of this heterogeneous architecture. In comparison, SCOOP performs custom
code generation and can hint the runtime about independent arguments, optimiz-
ing the resulting code, while CellSs’ source to source compiler only generates the
appropriate runtime calls.

SMP superscalar (SMPSs) is a task-parallel programming model focused on
the ease of programming, portability and flexibility that is based on CellSs. Con-
trary to CellSs, SMPSs is tailored multi-cores and Symmetric Multiprocessors
(SMP) in general. The runtime takes care of scheduling the tasks and handling the
associated data. The same differences as in CellSs apply here too.

OpenMP is a set of compiler directives for parallelizing sequential code, imple-
mented using a standardized API. OpenMP expresses shared memory loop and
task-parallelism, and supports specific directives for specifying local and shared
memory accesses used to optimize the code. However, it does not enforce any
synchronization automatically, requiring the programmer to manually use barriers,
locks, or other synchronization to avoid concurrency errors. OpenMP in compari-
son with SCOOP doesn’t perform any source-to-source transformations. Contrary
it is implemented in the compiler itself, producing directly the appropriate assem-
bly code. OpenMP’s standardized API, reduces its flexibility and prevents it from
evolving with the current trends. On the other hand, SCOOP’s syntax can easily
evolve with the current programming needs, and SCOOP itself can be ported to
many platforms, by adding new code generation modules.

Cilk/Cilk++ is a parallel programming language that extends C++ with recur-
sive task-based parallelism for shared memory systems. Cilk expresses parallelism
using a spawn statement to state that a function invocation can be computed in
parallel, and synchronization using the sync statement to state that a parent task
should wait until all its spawned children have finished. Cilk tasks can be very
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fine-grained without incurring much overhead, because Cilk only executes spawns
in parallel if necessary, using a work-stealing scheduler. Again, the programmer
is responsible to use sync or any other synchronization mechanism to avoid data
races and enforce specific task orderings. Cilk uses a dynamic analysis to detect
nondeterminism [17].

Sequoia is a parallel C++-like programming language that can target both
shared memory and distributed systems. In Sequoia, the programmer writes a
hierarchy of nested parallel tasks, where leafs are atomic and perform simple com-
putations, and inner tasks break down the computation into smaller sub-tasks,
and combine their results; a machine description that specifies the various levels
in the memory hierarchy, whether memory is shared, etc.; and a mapping file that
describes how data is broken and distributed among tasks and their sub-tasks,
which tasks are scheduled to run over which level of the memory hierarchy, and
when computation workload should be broken into smaller tasks. In comparison,
SCOOP and BDDT require no task nesting hierarchy specification, machine de-
scription nor mapping file. With SCOOP the programmer annotates the function
calls, she would like to be executed in parallel, with #pragma directives. SCOOP
then generates the appropriate code to be linked with the BDDT’s library.

All these programming models except SMPSs and CellSs do not provide implicit
synchronization. In the next subsection we discuss such programming models and
languages including SMPSs and CellSs.

1.3.2 Implicit Synchronization

Several programming models and languages aim to automatically infer synchro-
nization among parallel sections of code. Transactional Memory [18] preserves the
atomicity of parallel tasks, or transactions, by detecting and retrying any conflict-
ing code. Static lock allocation [19] provides the same serializability guarantees
by automatically inferring locks for atomic sections of code. These attempts, how-
ever, allow nondeterministic parallel executions, as they only enforce race freedom
or serializability, not ordering constraints among parallel tasks.

Recently, task-parallel models perform static and dynamic dependence analysis
to detect task dependencies, using the task’s memory footprint. BDDT is a run-
time system that detects and enforces task dependencies at the memory block level.
BDDT requires the programmer to provide the task footprint at arbitrary address
granularity, can express footprints of multidimensional array tiles, and incurs little
memory overhead. The scalability in such systems is limited by the runtime over-
head for calculating task dependencies. SCOOP compiles a task-parallel program
to use the BDDT runtime and uses static analysis to reduce that runtime cost. Not
counting the dependence analysis, BDDT has been shown to perform similarly or
better to OpenMP.
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StreamIt [20] implements a dataflow model of computation where the program
includes static dependencies among the various stages of the pipeline. Since all
dependencies among parallel code sections are explicit, the compiler generates all
synchronization, data transfer and copying necessary to guarantee deterministic
execution that preserves the ordering among parallel tasks.

SMPSs and CellSs are two more runtime systems that use dynamic analysis
to detect dependencies between tasks, focusing on scientific programs with arrays,
written in the StarSs programming model. In comparison, SCOOP and BDDT
support tasks operating on multidimensional array tiles with arbitrary overlap,
and use a context-sensitive static dependency analysis to avoid runtime overheads
unless necessary.

SvS [5] uses a custom task-description language, and a static dependence analysis
that determines all reachable objects for each task. A runtime system then uses an
efficient approximate representation of the reachable object sets, resembling Bloom
filters to enforce mutual exclusion, not deterministic ordering, between conflicting
tasks. Moreover, SvS object reachability sets are approximate and may include
many reachable objects in the program, regardless of whether they are actually
accessed by a task instance. This may hinder the available parallelism, and does
not take advantage of programmer knowledge about the memory footprint of each
task. In contrast, SCOOP uses a static dependency analysis to exclude possible
dependencies and remove unnecessary runtime checks, it does not require a type-
safe language or object granularity on task footprints and it uses the BDDT runtime
to guarantee deterministic program order.

Out-of-Order Java [3] and Deterministic Parallel Java [4, 21] , task-
parallel extensions of Java, use a combination of data-flow, type-based, region and
effect analyses to statically detect or check the task footprints and dependencies in
Java programs at object granularity. OoOJava then enforces mutual exclusion on
conflicting tasks and DPJ restricts uses transactional memory to roll back tasks in
case of conflict.

CommSet [22] defines commutative sets that describe sets of commutative tasks
in a parallel program. The compiler can use this information to allow more possible
orderings in a program and extract more parallelism. As with all compiler-based
parallelization techniques, this approach is limited by overapproximation in static
pointer and control flow analyses, that might cause many tasks to be run sequen-
tially, because only two instances have clearly disjoint memory footprints. To avoid
this, CommSet uses optimistic transactional memory, which, however is not suit-
able for programs with high contention or effects that cannot be rolled back.
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1.3.3 Static Analysis

Static dependence analysis is often employed in compilers and tools that optimize
existing parallel programs or for automatic parallelization. Early parallelizing com-
pilers used loop dependence analysis to detect data parallelism in loops operating
on arrays [23, 24]. These systems, however do not handle inter-loop dependencies
and do not work well in the presence of pointers.

Several pointer analyses have been previously used to detect dependencies and
interactions in parallel programs. Naik and Aiken [25] extend pointer analysis
with must-not-alias analysis to detect memory accesses that cannot lead to data
races. Pratikakis et al. [26, 11] use a context-sensitive pointer and effect analysis to
detect memory locations accessed by many threads in the Locksmith race detector.
SCOOP uses the pointer analysis in Locksmith to detect aliasing between footprints
of different tasks, and extends Locksmith’s flow-sensitive dataflow analysis to detect
tasks that can run in parallel.



Chapter 2

Design and Implementation

We have implemented SCOOP as a source-to-source compiler that produces GCC
code using CIL [27] as a C front-end and SDAM [10] and Locksmith [26] to generate
and solve points-to and control-flow constraints.

We have designed the code generation module to be completely separated from
the others. This way we gave SCOOP portability over different platforms. SCOOP
maintainers can, with only a few changes in the main tool, write a new code
generation module. The process is as simple as using a template to write the new
code generation module and add any required flags, with their handlers, to the
main tool.

Figure 2.1 shows the full compilation process using SCOOP. First SCOOP
parses the source code files and, using SDAM and Locksmith, generates a single
or two (depending on the architecture) source code files. Then this file/files is
compiled using gcc, targeting the appropriate platform/architecture. Finally we
link the compiled code with the runtime’s library.
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Figure 2.1: The toolchain

SCOOP is structured as three modules. In Figure 2.2 we see a graphical rep-
resentation of a SCOOP pass. First SCOOP parses and merges all the source files
in a single Abstract Syntax Tree (AST). Then it uses SDAM’s static analysis to

9
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infer independent arguments. Finally, SCOOP generates custom code that uses
BDDT for creating and managing tasks, disabling BDDT’s runtime dependence
checks for inferred or declared independent arguments and making some further
improvements.

In the rest of this chapter we examine those three modules in more detail.
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Figure 2.2: The three SCOOP’s modules

2.1 Syntax

The first module extends the C front-end with support for OpenMP-like #pragma
directives to define tasks and SMPSs-like syntax to define task footprints. We
have chosen to mark task creation at the calling context, instead of marking a
function definition and have every invocation of the function create a parallel task
as in SMPSs, for two reasons: First, this way we are able to differentiate when
a function is called sequentially or asynchronously as a parallel task, and second,
because depending on the arguments and calling context, an argument may or
may not be safe, and fixing the type of the task footprint for all its invocations
would prohibit that. The syntax for declaring task footprints supports strided
memory access patterns, so that we can describe multidimensional array tiles as
task arguments. When not explicitly given, we assume that the size of a task
argument is the size of its type.

SCOOP supports the following #pragma annotations 1

• #pragma scoop start ( <parameters> 2 )
initializes the runtime

• #pragma scoop finish
finalizes the runtime

1Regular expressions: * means 0 or more, + means 1 or more (comma seperated), { and } are
used for grouping, | means or, ? means 0 or 1

2depends on the runtime’s requirements
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• #pragma scoop wait all
implements a global barrier

• #pragma scoop task\
{ in|out|inout|safe( {<task arguments>}+ ) }*|
{ region <variable name> in|out|inout( {<variable name>}+ ) }*

Task argument notation:
Non stride: <variable name>{[variable size]}?
Stride: <variable name>[Block Rows|Block Columns]\

[ {Array Rows 3 |}? Array Columns]

2.1.1 Example

Code 2.1: A simple program

1 int a = 1;
2 int b = 2;
3 int c = 3;
4 int d = 4;
5
6 void set(int ∗x, int ∗y) { ∗x = ∗y; }
7 void addto(int ∗x, int ∗y) { ∗x += ∗y; }
8
9 void main() {
10 addto(&a, &b);
11 addto(&c, &d);
12
13 addto(&a, &c);
14
15 set(&b, &a);
16 set(&c, &a);
17 set(&d, &a);
18 }

Consider the C program in Code 2.1. This program has four global integer
variables, a, b, c and d (lines 1–4). Function set() copies the value of its second
argument to the first (line 6), and function addto() adds the value of its second
argument to the value of its first (line 7). The two functions are then used to
calculate the sum of the four global integer variables, and store it in each of them.
To achieve this, addto() is invoked to add first b to a, then d to c and finally c
to a (lines 10–13). Then set() is invoked to assign the value of a to b, c and d
(lines 15–17).

3Array Rows is optional and is totally ignored
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In this program the first two calls to addto() (lines 10–11) operate on different
variables, and any execution order of them would give the same result, meaning
they can be executed in parallel. Furthermore all three calls to set() (lines 15–17)
write on different variables but all of them read from a, meaning that after a is
written they can be executed in parallel.

At this point we can break the program in three different segments where the
code of the first and the third segment can execute in parallel. Code 2.2 shows how
we would rewrite the C program from Code 2.1 using SCOOP, considering that
the task-parallel runtime we are targeting doesn’t perform dynamic dependence
analysis, thus inserting barriers to manually resolve dependencies.

Code 2.2: Code 2.1 written using SCOOP annotations

1 int a = 1;
2 int b = 2;
3 int c = 3;
4 int d = 4;
5
6 void set(int ∗x, int ∗y) { ∗x = ∗y; }
7 void addto(int ∗x, int ∗y) { ∗x += ∗y; }
8
9 void main() {
10 #pragma scoop start(...)
11
12 #pragma scoop task inout(&a) in(&b)
13 addto(&a, &b);
14 #pragma scoop task inout(&c) in(&d)
15 addto(&c, &d);
16
17 #pragma scoop wait all
18 addto(&a, &c);
19
20 #pragma scoop task out(&b) in(&a)
21 set(&b, &a);
22 #pragma scoop task out(&c) in(&a)
23 set(&c, &a);
24 #pragma scoop task out(&d) in(&a)
25 set(&d, &a);
26
27 #pragma scoop finish
28 }

In this program the first two calls to addto() (lines 12–15) execute in parallel.
Then the program waits at line 17 until they both finish. After both tasks finish,
the third call to addto() (line 18) is executed sequentially followed by the three
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parallel executions of set() (lines 20–25). Finally the program waits again for all
tasks to finish at line 23.

2.2 Argument Independence Inference

The second SCOOP module (SDAM) uses a type-system to generate points-to and
control-flow constraints, and then uses the Locksmith engine to solve them and
infer argument independence.

SCOOP treats input and output task arguments differently. In particular, we
match the behavior of the BDDT runtime, which allows multiple reader tasks of a
memory location to run in parallel. Thus, we also mark task arguments that are
only read in parallel as independent.

To increase the analysis precision, we employ the context-sensitive, field sensi-
tive points-to analysis of Locksmith and a context-sensitive control-flow analysis.
In both cases, context sensitivity is encoded as CFL-reachability, with either points-
to or control-flow edges, that enter or exit a calling context, marked as special open
or close parenthesis edges [28, 29].

Finally, in several benchmarks, tasks within loops access disjoint parts of the
same array. However, Locksmith’s points-to analysis treats all array elements as
one abstract location, producing false aliasing and causing such safe arguments to
be missed. To rectify this, in part, we have implemented a simple loop-dependence
analysis that discovers when different loop iterations access non-overlapping ar-
ray elements. This (orthogonal) problem has been extensively studied in the
past [30, 24, 31, 23], resulting in many techniques that can be applied to improve
the precision of this optimization.

Code 2.3: Task parallel example program

1 int a = 1;
2 int b = 2;
3 int c = 3;
4 int ∗ alias = &b;
5
6 void set(int ∗x, int ∗y) { ∗x = ∗y; }
7 void addto(int ∗x, int ∗y) { ∗x += ∗y; }
8
9 int main() {

10 #pragma scoop start(...)
11
12 #pragma scoop task inout(&b) safe(&c)
13 addto(&b, &c);
14
15 #pragma scoop task safe(&a) in(alias)
16 set(&a, alias );
17
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18 #pragma scoop wait all
19
20 #pragma scoop task safe(&a) safe(&c)
21 set(&a, &c);
22
23 #pragma scoop finish
24 }

2.2.1 Example

Consider the C program in Code 2.3. This program has three global integer
variables, a, b and c (lines 1–3) and a global pointer alias (line 4) that points
to b. Function set() copies the value of its second argument to the first (line 6),
and function addto() adds the value of its second argument to the value of its first
(line 7).

The two functions are then invoked in two parallel tasks, to add c to b (lines 12–
13) and to set the value of a to the value pointed to by alias (lines 15–16). The first
task reads and writes its first argument, b, and reads from its second argument, c.
Similarly, the second task writes to its first argument, a, and reads from its second
argument alias. The program then waits at a synchronization point for the first
two tasks to finish (line 18) and then spawns a third task that reads from c and
writes to a (lines 20–21).

To execute this program preserving the sequential semantics, the second task
set() needs to wait until the value of b is produced by the first task, i.e., there is a
dependency on memory location b. Note, however, that since the third task cannot
be spawned until the first two return, memory location c is only accessed by the
first task and a is only accessed by the second. So, any dependence analysis time
spent checking for conflicts on a or c before the first two tasks start is unnecessary
overhead, that delays the creation of the parallel tasks, possibly restricting avail-
able parallelism, and thus the scalability of the program. So, the #pragma scoop
task directive spawning these tasks states that c and a are safe or independent
arguments, that the analysis does not need to track. For the same reason, both the
arguments of the third task are safe, meaning it can start to run without checking
for dependencies.

2.3 Code Generation

The final SCOOP module transforms the input program to use BDDT for creating
and managing tasks, disabling BDDT’s runtime dependence checks for inferred
or declared independent arguments. During the code generation phase, we make
further improvements to the compiled code by producing custom code to interact
with the dependence analysis and scheduler, instead of using the generic runtime’s
API. In particular, for each #pragma scoop task call, SCOOP generates a new
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function that creates a task descriptor with the original function as task body,
registers the task arguments with the runtime dependence analysis (BDDT only),
and replaces the specified function call with the new task-creator wrapper function.
Moreover, statically knowing the number of arguments and their data flow type,
SCOOP is able to generate custom task invocation code that does not use loops
to register task arguments with the runtime or expensive va_arg lists. Finally,
SCOOP detects scalar arguments and automatically passes them by value, marking
them as safe.

To demonstrate the code generation we use a derivation of Code 2.2, that
requires implicit synchronization. Code 2.4 is an alternative way to express Code
2.1 using SCOOP annotations.

Code 2.4: Code 2.1 program written using SCOOP annotations, depending on
implicit synchronization

1 int a = 1;
2 int b = 2;
3 int c = 3;
4 int d = 4;
5
6 void set(int ∗x, int ∗y) { ∗x = ∗y; }
7 void addto(int ∗x, int ∗y) { ∗x += ∗y; }
8
9 void main() {
10 #pragma scoop start(...)
11
12 #pragma scoop task inout(&a) in(&b)
13 addto(&a, &b);
14 #pragma scoop task inout(&c) in(&d)
15 addto(&c, &d);
16 #pragma scoop task inout(&a) in(&c)
17 addto(&a, &c);
18
19 #pragma scoop wait all
20
21 #pragma scoop task out(&b) in(&a)
22 set(&b, &a);
23 #pragma scoop task out(&c) in(&a)
24 set(&c, &a);
25 #pragma scoop task out(&d) in(&a)
26 set(&d, &a);
27
28 #pragma scoop finish
29 }
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In this program the first two calls to addto() (lines 12–15) execute in parallel,
but the third one (line 17), although annotated, will execute after the first two tasks
because of the data dependencies on a and c. Then the program waits at line 19
until they all finish. After all tasks finish, the third call to addto() (line 17) is
executed sequentially followed by the three parallel executions of set() (lines 16–
26). Finally the program waits again for all tasks to finish at line 28.

In the rest of this section we discuss the SCOOP generated code for Code 2.4.
Subsection 2.3.1 describes the code generation for x86 Shared Memory Processors
(SMP) , while subsection 2.3.2 describes the code generation for the Cell proces-
sor. The main difference between the two architectures is that the Cell processor
requires two separate executables, one for the Power Processor Element (PPE )
and another for the Synergistic Processing Elements (SPE ), while x86 SMP ar-
chitecture requires only one.

2.3.1 x86 SMP

In x86 SMP architectures the code generation is simpler, as we don’t have to copy
functions between files. The main transformations in these architectures are the
creation of the custom functions that generate the task descriptors, the creation of
the task table and the placement of the appropriate library calls for initialization,
finalization and synchronization. Code 2.5 shows the SCOOP generated code for
Code 2.4.

Code 2.5: SCOOP generated code for Code 2.4 targeting BDDT on x86

1 ...
2 void scoop_func_addto_0(int∗ x,int∗ y, int size0, int size1) {
3 ... //create task descriptor and pass to runtime
4 task_d->funcid = (uint8_t )0;
5
6 //1st argument
7 first_block = task_d->total_args;
8 AddAttribbute_Task(task_d, (void ∗)x, INOUT, arg_size0);
9 task_d->args[first_block ]. flag |= START;
10
11 //2nd argument
12 task_d->args[task_d->total_args].size = arg_size1;
13 task_d->args[task_d->total_args].address = (void∗)y;
14 task_d->args[task_d->total_args].flag = INPUT|START|SAFE;
15 task_d->total_args++;
16 ...
17 }
18
19 void scoop_func_addto_1(int∗ x,int∗ y, int size0, int size1) {
20 ... //create task descriptor and pass to runtime
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21 task_d->funcid = (uint8_t )0;
22
23 //1st argument
24 first_block = task_d->total_args;
25 AddAttribbute_Task(task_d, (void ∗)x, INOUT, arg_size0);
26 task_d->args[first_block ]. flag |= START;
27
28 //2nd argument
29 first_block = task_d->total_args;
30 AddAttribbute_Task(task_d, (void ∗)y, INOUT, arg_size1);
31 task_d->args[first_block ]. flag |= START;
32 ...
33 }
34
35 void scoop_func_set_0(int∗ x,int∗ y, int size0, int size1 ) {
36 ... //create task descriptor and pass to runtime
37 task_d->funcid = (uint8_t )1;
38
39 //1st argument
40 task_d->args[task_d->total_args].size = arg_size0;
41 task_d->args[task_d->total_args].address = (void∗)x;
42 task_d->args[task_d->total_args].flag = OUTPUT|START|SAFE;
43 task_d->total_args++;
44
45 //2nd argument
46 task_d->args[task_d->total_args].size = arg_size1;
47 task_d->args[task_d->total_args].address = (void∗)y;
48 task_d->args[task_d->total_args].flag = INPUT|START|SAFE;
49 task_d->total_args++;
50 ...
51 }
52 ...
53 void main(void) {
54 bddt_start (...);
55
56 scoop_func_addto_0(&a, &b, sizeof(int), sizeof(int));
57 scoop_func_addto_0(&c, &d, sizeof(int), sizeof(int));
58 scoop_func_addto_1(&a, &c, sizeof(int), sizeof(int));
59
60 bddt_wait_all();
61
62 scoop_func_set_0(&b, &a, sizeof(int), sizeof(int));
63 scoop_func_set_0(&c, &a, sizeof(int), sizeof(int));
64 scoop_func_set_0(&d, &a, sizeof(int), sizeof(int));
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65
66 bddt_shutdown();
67 }

For addto(), SCOOP generated two different functions, scoop_func_addto_0
(line 2) and scoop_func_addto_1 (line 19). scoop_func_addto_0() handles the
second argument as independent, excluding it from the dependence analysis graph
, while scoop_func_addto_1 handles both arguments as possible dependencies.
SCOOP generated two different functions because in the lines 12–19 of Code 2.4,
b and d can be considered independent as they don’t alias and there is no data
flow between them. SCOOP queries SDAM for this arguments and generates
code accordingly. That said, the first two tasks (lines 56–57) can be spawned
without the need to check their second argument for dependencies. However the
third task (line 58) depends on the result of the previous two (lines 56–57), thus
we use scoop_func_addto_1(), so that the runtime checks for its second argu-
ment in the dependency graph. Also notice that both scoop_func_addto_0()
and scoop_func_addto_1() set the same func_id, that of addto(), to the task
descriptor (lines 4 and 21 ).

For set(), SCOOP generated only one function, scoop_func_set_0 (line 35).
In the code segment between the lines 19 and 28 of Code 2.4, a is only being read
and b, c and d do not alias, so the three set() calls can execute in parallel without
any dependencies. scoop_func_set_0() issues all three set() calls, preventing
the runtime from checking their arguments for dependencies.

2.3.2 Cell BE processor

As previously stated, the Cell processor requires the generation of two different
executables. SCOOP takes as input a single #pragma annotated program’s source
code and creates two source code files as output, one for the PPE and the other
for the SPUs.

The PPE file contains the whole program as well as the generated functions for
the task issuing. Code 2.6 shows a part of the generated PPE file.

Code 2.6: SCOOP generated code for Code 2.4 targeting BDDT on the Cell
processor

1 ...
2 void scoop_func_addto_0(int∗ x,int∗ y, int arg_size0, int arg_size1) {
3 ... //create task descriptor and pass to runtime
4 task_d->funcid = (uint8_t )0;
5
6 //1st argument
7 first_block = task_d->total_args;
8 DivideArgumentToBlocks(task_d, (void ∗)x, arg_size0, INOUT);
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9 task_d->args[first_block ]. flag |= START;
10
11 //2nd argument
12 task_d->args[task_d->total_args].size = arg_size1;
13 task_d->args[task_d->total_args].flag = INPUT|START|SAFE;
14 task_d->args[task_d->total_args].address = (void∗)y;
15 task_d->total_args++;
16 ...
17 }
18
19 void scoop_func_addto_1(int∗ x,int∗ y, int arg_size0, int arg_size1) {
20 ... //create task descriptor and pass to runtime
21 task_d->funcid = (uint8_t )0;
22
23 //1st argument
24 first_block = task_d->total_args;
25 DivideArgumentToBlocks(task_d, (void ∗)x, arg_size0, INOUT);
26 task_d->args[first_block ]. flag |= START;
27
28 //2nd argument
29 first_block = task_d->total_args;
30 DivideArgumentToBlocks(task_d, (void ∗)y, arg_size1, INPUT);
31 task_d->args[first_block ]. flag |= START;
32 ...
33 }
34
35 void scoop_func_set_0(int∗ x,int∗ y, int arg_size0, int arg_size1) {
36 ... //create task descriptor and pass to runtime
37 task_d->funcid = (uint8_t )1;
38
39 //1st argument
40 task_d->args[task_d->total_args].size = arg_size0;
41 task_d->args[task_d->total_args].flag = OUTPUT|START|SAFE;
42 task_d->args[task_d->total_args].address = (void∗)x;
43 task_d->total_args++;
44
45 //2nd argument
46 task_d->args[task_d->total_args].size = arg_size1;
47 task_d->args[task_d->total_args].flag = INPUT|START|SAFE;
48 task_d->args[task_d->total_args].address = (void∗)y;
49 task_d->total_args++;
50 ...
51 }
52 ...
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53 void main(void) {
54 bddt_start (...);
55
56 scoop_func_addto_0(&a, &b, sizeof(int), sizeof(int));
57 scoop_func_addto_0(&c, &d, sizeof(int), sizeof(int));
58 scoop_func_addto_1(&a, &c, sizeof(int), sizeof(int));
59
60 bddt_wait_all();
61
62 scoop_func_set_0(&b, &a, sizeof(int), sizeof(int));
63 scoop_func_set_0(&c, &a, sizeof(int), sizeof(int));
64 scoop_func_set_0(&d, &a, sizeof(int), sizeof(int));
65
66 bddt_shutdown();
67 }

It is similar to Code 2.5, only with DivideArgumentToBlocks instead of
AddAttribbute_Task().

The SPU file contains copies of all the functions that have annotated calls, so
the runtime can invoke them through the task dispatcher. Furthermore it contains
the task dispatcher. Code 2.7 shows an example of a SCOOP generated BDDT
task dispatcher for Code 2.2.

Code 2.7: SCOOP generated BDDT task dispatcher Code 2.4

1 int execute_task(queue_entry_t ∗ex_task, spe_task_state_t ∗task_info) {
2 int exit = 0;
3
4 switch(ex_task_d->funcid){
5 case 0:
6 {
7 set( (int ∗)(task_info->local [0]) ,( int ∗)(task_info->local [1]) );
8 break;
9 }
10 case 1:
11 {
12 addto( (int ∗)(task_info->local [0]) ,( int ∗)(task_info->local [1]) );
13 break;
14 }
15 default:
16 {
17 exit = 1;
18 break;
19 }
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20 }
21
22 task_info->state = EXECUTED;
23 return exit;
24 }

2.3.3 Tiled arguments

SCOOP also supports tiles of arrays as arguments. To use such arguments the
programmer must specify the array’s number of columns, the tile’s number of rows
and the tile’s number of rows. Code 2.8 shows an example where we want to
process 25x50 tiles of an 100x100 array of integers. And Code 2.9 shows how the
generated code by SCOOP looks like.

Code 2.8: Example of tiled arguments using SCOOP

1 void main(void) {
2 int int_array [100][100];
3 ...
4 arg1=&array [25][0];
5 arg2=&array[50][50];
6 #pragma scoop task in(arg1[25|50][100] ) out(arg2[25|50][100])
7 process_tile (arg1, arg2);
8 ...
9 }

Code 2.9: SCOOP generated code for Code 2.8

1 ...
2 scoop_process_tile_0(int∗ arg1, int∗ arg2,
3 int els0 , int el_sz0, int stride0 ,
4 int els1 , int el_sz1, int stride1 ){
5 ...
6 //1st argument
7 for( i=0; i<els0; ++i, arg1+=stride0){
8 first_block = task_d->total_args;
9 AddAttribbute_Task(task_d, (void ∗)arg1, INPUT, el_sz0);
10 task_d->args[first_block ]. flag |= START;
11 }
12
13 //2nd argument
14 for( i=0; i<els1; ++i, arg2+=stride1){
15 first_block = task_d->total_args;
16 AddAttribbute_Task(task_d, (void ∗)arg2, OUTPUT, el_sz1);
17 task_d->args[first_block ]. flag |= START;
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18 }
19 ...
20 }
21 ...
22 void main(void) {
23 int int_array [100][100];
24 ...
25 arg1=&array [25][0];
26 arg2=&array[50][50];
27 scoop_process_tile_0(arg1, 25, 50∗sizeof(int), 100∗sizeof(int),
28 arg2, 25, 50∗sizeof(int), 100∗sizeof(int));
29 ...
30 }

Each tile row is actually passed as a different argument, with size equal to tile
columns × sizeof(int), to the runtime. This is done with the two loops at lines
7 and 14. In each loop iteration the address of the argument is ascended by the
stride. The stride is calculated multiplying the array’s number of columns with the
size of its elements, in our case integers. Tiled arguments are pretty common in
matrix manipulation and image processing algorithms.

2.4 Infrastructure

SCOOP first uses CIL [27], a front-end for the C programming language that fa-
cilitates program analysis and transformation, to parse and simplify the input pro-
gram. SDAM then uses Locksmith’s [11] points-to and data flow analysis engines
to find aliasing among task arguments and implement the barrier analysis. Finally,
SCOOP performs all code rewriting on the CIL AST, using the results computed
by the SDAM analysis to tag any independent arguments for the runtime.

2.5 Regions

We have extended BDDT to support non-hierarchical regions. A region is like a
stack of unbounded size which grows, until the region in its entirety is freed. The re-
gion library introduced provides three API calls, bddt_newregion(), bddt_ralloc(
region, size) and bddt_deleteregion( region ). Regions are implemented as
structures including their allocator and logistics about the allocated memory seg-
ments. As its name implies bddt_newregion() creates a new region. bddt_ralloc(
region, size) allocates size bytes from region and returns the address point-
ing to them. Memory segments allocated using bddt_ralloc( region, size)
are freed when bddt_deleteregion( region ) is called. bddt_deleteregion(
region ) returns the freed memory segments to a memory pool so they can be
used by other regions.
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Regions enable BDDT to handle dynamic data structures as well as dynamic
memory allocation within tasks. For example, a typical use of a region is to hold a
list. All list nodes belong to the same region. This is achieved by assigning a region
to the list and then allocating all the nodes of the list in this same region. This
way we can add a whole list to the footprint of the task (using its region) , while
without region support we should put all the node addresses to the task footprint.
Furthermore region support enables tasks to manipulate dynamic data structures,
such as lists, hashtables etc. With regions we can add a whole dynamic data
structure to the footprint of a task (using its region). In contrast, without region
support we should put all the node addresses to the task footprint, something not
always possible and extremely hard.

When it comes to dynamic memory allocation inside tasks, the programmer
must have previously added a region in the tasks footprint as out or inout. Then
she can allocate as much memory as she needs with bddt_ralloc() from that region
inside the task. This enables parallel manipulation of dynamic data structures. For
example the initialization of a hashtable. After sequentially determining the bucket
to insert the element a task can be spawned to push the element in the bucket list.

Furthermore, by their implementation BDDT regions provide better memory
locality to dynamic data structures and reduced overheads for both memory man-
agement and dependence analysis. The region memory pools are allocated as pages
and whenever bddt_ralloc() requests some space the region library gives the next
free segment of the page or if that is not enough, which is not the common path,
gives a segment of a new page. This way most of a list’s nodes, for example, will be
allocated in continuous memory, resulting in less memory misses on list traversals.
Additionally allocating a whole page instead of each node separately, reduces the
allocation cost with the trade of that some memory segments might be allocated
but never used. The same is with free where instead of invoking free for each node,
we free the whole region at once. Moreover, regions remove many dependency
checks from BDDT. Each region is checked once without the need to check all of
it’s memory blocks.
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Chapter 3

Evaluation

This chapter presents an evaluation of the SCOOP’s transformations impact on
the benchmarks’ running time and scalability. Furthermore we explore additional
ways for a programmer to expose more independent task arguments to SDAM, and
how this can affect performance.

Also note, that we have placed barriers between the initialization process and
the parallel section of the code. Although we do this to measure the applications
executions time without interference from rogue tasks from the initialization pro-
cess, some Read-after-Write dependencies are eliminated by SCOOP because of
these barriers.

The evaluation was performed mostly on the x86 SMP architecture, due to
the ease of deployment over the PS3. Furthermore the Cray node offers 24 cores
over the PS3’s 1 PPE and 6 SPEs. Allthoug the two platforms are completely
different and the runtime developers where challenged by different aspects, we
believe that our source to source transformations are not bound to the architecture.
Thus we present results from both architectures but focus mainly on the x86 SMP
architecture.

We observe that not all benchmarks offer opportunities to detect safe argu-
ments. We show figures on the number of safe arguments found by SDAM and the
number of safe arguments found by manually examining the code. Moreover, we
show how we promote scalability with certain benchmarks by removing task argu-
ments from the runtime analysis. Finally, we examine how we can expose more
safe arguments with some extra effort from the programmer, how this can benefit
performance and how well our tool does in detecting such safe arguments.

3.1 Evaluation Methodology

We evaluate SCOOP on a modest set of representative benchmarks, including
several computational kernels and small-sized parallel applications on both archi-
tectures. This chapter describes the experimental setup, benchmarks, and method-
ology used for the evaluation presented in chapter 3.

25
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3.1.1 Platforms

x86 SMP

We conduct all experiments for the x86 SMP architecture on one compute node of
a Cray XE6 supercomputer with two AMD 2.1 GHz 12-core processors and 32GB
of main memory. We also use one Intel Xeon E5520 2.27GHz, with 12GB of main
memory for the single-core runs of Figure 1.1. All executables are generated on
the Intel Xeon system with GCC 4.4.3 and the -O3 flag.

Cell BE processor

For the Cell architecture evaluation we used a sony PlayStation 3 (PS3) game
console system, equipped with a 3.2 GHz Cell processor and 256 MBytes of main
memory. On the PS3, applications are allowed to access only six out of the eight
SPEs in the Cell processor. All benchmarks are first source to source compiled
using SCOOP on an x86 machine and then compiled on the PS3 with GCC 4.1.2
and the -O3 flag.

3.1.2 Benchmarks

We use seven benchmarks for the x86 SMP evaluation and four more for the Cell
BE processor evaluation. Next, we briefly discuss each benchmark.

x86 SMP

Black-Scholes is a parallel implementation of a mathematical model for price
variations in financial markets with derivative investment instruments. It decom-
poses and processes the data in rows. This Black-Scholes implementation is taken
from the PARSEC [32] benchmark suite.

SMPSs-FFT is an implementation of a 2 dimensional Fast Fourier Transform al-
gorithm. This FFT implementation is part of the SMPSs distribution, and consists
of five parallel loops that alternate in transposing the input array and performing
1 dimensional FFT on each row. Each task created in the FFT calculation loop
operates on an entire row of the array, while transposition phases break the array
into tiles and create a task to transpose a group of tiles.

SPLASH-FFT is an alternative FFT kernel implementing a similar 2 dimen-
sional algorithm. SPLASH-FFT is part of the SPLASH-2 [33] benchmark suite.

GMRES is an implementation of the iterative Generalized Minimal Residual
method for solving systems of linear equations. GMRES decomposes and processes
the input data in array rows.
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Jacobi is a parallel implementation of the Jacobi method for solving systems of
linear equations. It uses a 2-dimensional array with tiled layout. This Jacobi imple-
mentation is part of the SMPSs distribution. Each parallel task in Jacobi processes
a tile of the array with a kernel implementing a 5-point stencil computation.

HPL solves a random dense linear system in double precision arithmetic. It is
part of the High-Performance Linpack Benchmark.

Multisort is a parallel implementation of Mergesort. Multisort is an alternative
implementation of the Cilksort [1] example, and has two phases: during the first
phase, it divides the data into chunks and sorts each chunk. During the second
phase, it merges those chunks.

Cell BE processor

Cholesky is the blocked sparse Cholesky factorization kernel from SPLASH-2
[33]. It factors a sparse matrix into the product of a lower triangular matrix and
its transpose. It is similar in structure and partitioning to the LU factorization
kernel (see below), but has two major differences: (i) it operates on sparse matrices,
which have a larger communication to computation ratio for comparable problem
sizes, and (ii) it is not globally synchronized between steps.

LU kernel is also taken from SPLASH-2. It factors a dense matrix into the prod-
uct of a lower triangular and an upper triangular matrix. The dense n x n matrix A
is divided into an N x N array of B x B blocks (n = NB) to exploit temporal local-
ity on submatrix elements. To reduce communication, block ownership is assigned
using a 2-D scatter decomposition, with blocks being updated by the processors
that own them. The block size B should be large enough to keep the cache miss
rate low, and small enough to maintain good load balance. Fairly small block sizes
(B=8 or B=l 6) strike a good balance in practice. Elements within a block are
allocated contiguously to improve spatial locality benefits, and blocks are allocated
locally to processors that own them. See [34] for more details.

SAXPY stands for Single-precision real Alpha X Plus Y. SAXPY is one of the
first level functions in the Basic Linear Algebra Subprograms (BLAS) package.
SAXPY is a combination of scalar multiplication and vector addition, z = αx+ y,
where α is a scalar and x and y are vectors. [35]

SGEMV computes the matrix-vector product for either a real general matrix
or its transpose, using the scalars α and β, vectors x and y, and matrix A or its
transpose AT :

z = βy + αAx
or

z = βy + αATx



28 CHAPTER 3. EVALUATION

3.1.3 Measurement Methodology

In our experiments, we measure the performance of the parallel section of the code,
excluding any initialization and I/O at the start and end of each benchmark. In
some of the benchmarks, initialization is also done in parallel to achieve locality
in NUMA machines, although it is not optimized for performance or counted for
running times.

For each benchmark, we ran a basecase version we wrote manually, using the
BDDT API to spawn tasks. The base case does not use any annotations for inde-
pendencies, hence BDDT dynamically tracks all task arguments for dependencies.

Benchmark LOC Tasks Total Args Scalar Args

x86 SMP

Black-Scholes 1540 1 8 1
SMPSs-FFT 2147 8 36 25
SPLASH-FFT 2920 4 12 0
GMRES 2652 18 72 20
HPL 2396 11 63 35
Jacobi 1076 1 6 0
Multisort 1118 3 8 4

Cell BE

Cholesky 2195 4 8 0
LU 2819 3 10 3
SAXPY 1675 1 3 1
SGEMV 2159 1 4 1

Table 3.1: Benchmarks’ characteristics

Table 3.1 shows the size of each benchmark in lines of code 1 , the number of
task invocations, the total number of arguments of all tasks, and how many of those
arguments are scalars. All scalar arguments are marked as safe in both version of
the code for each benchmark, since it is trivial for either the programmer or the
analysis to find them, thus we do not count them as safe arguments discovered by
the analysis.

3.2 Overhead Reduction

Table 3.2 shows the effect of SCOOP on the total running time of all benchmarks,
listed in the first column, when run on 24 cores on the Crey node and on 6 SPEs
on the PS3. The second column shows the total running time in milliseconds when
using BDDT to perform runtime dependency analysis on all task arguments of all
tasks. The third column shows the total running time in milliseconds for the bench-
mark compiled with SCOOP, without runtime dependence checking for arguments

1We count lines of code after preprocessing and merging all source files, not counting blank
lines and comments
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found independent by the analysis. The fourth column shows the relative speedup
percentage 2 gained by applying SCOOP, and the last two columns show the total
number of task arguments found to be independent, out of the total number of
non-scalar task arguments in each program.

Benchmarks BDDT
(msec)

SCOOP
(msec) Speedup% Inferred

Args

Non
Scalar
Args

x86
SMP

Black-Scholes 452.07 138.75 69.31 7 7
SMPSs-FFT 526.59 524.37 0.42 0 11
SPLASH-FFT 903.05 698.87 22.61 7 12
GMRES 4610.88 4379.04 5.03 9 52
HPL 612.82 604.43 1.37 1 28
Jacobi 3518.36 3503.88 0.41 0 6
Multisort 4098.82 4100.36 -0.04 0 4

Cell
BE

Cholesky 19.37 19.42 -0.26 0 8
LU 9172.66 9046.37 1.37 3 7
SAXPY 248.91 243.51 2.16 2 2
SGEMV 27.55 23.41 15.03 2 3

Table 3.2: Running times and speedup using 24 cores on x86 SMP and 1 PPE +
6 SPEs on the Cell BE

Overall, the average speedup from applying SCOOP on all benchmarks is
10.67%. This value however, is not representative, since the actual impact greatly
varies among benchmarks. Specifically, the independence analysis is able to infer
safe task arguments only in six out of the eleven benchmarks. This has a large
impact on the overhead and scalability of the BDDT runtime dependence analy-
sis, producing substantial speedup over the original BDDT versions. On the other
hand, the analysis did not discover any safe task arguments in SMPSs-FFT, Jacobi,
Multisort, or Cholesky, which do not gain any significant benefit from SCOOP,
other than that resulting from custom code generation (avoiding va_args in the
BDDT API, etc.). We consider the slowdowns in Multisort and Cholesky to be
within noise.

It is noticeable that allthough SCOOP completely removes the dynamic depen-
dence analysis for SAXPY it doesn’t get the expected speedup. This reveals that
in the Cell BE we don’t achieve more parallelism removing dependencies, probably,
due to the low number of workers. Figure 3.1 shows the breakdown of the Cell BE
execution times. We only present the three benchmarks where SCOOP was able to
infer some safe arguments. ADAM are the breakdowns of the benchmarks written
using BDDT’s API. SCOOP are the breakdowns of the benchmarks written us-
ing SCOOP annotations and compiled after a SCOOP pass with SDAM disabled.
Finally SDAM are the breakdowns of the benchmarks written using SCOOP an-

2The speedup percentage is calculated as timeBDDT−timeSCOOP
timeBDDT

× 100
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notations and compiled after a SCOOP pass with SDAM enabled.

The breakdown in details:

• Complete time is the time required to update the dependency graph for each
completed task.

• Issue time is the time needed by the runtime to check for dependencies and
send the tasks to the workers.

• Instantiate time is the time needed by the runtime to create the tasks’ de-
scriptions and their arguments’ descriptions, as well as to add them in DAG
(Dependence Analysis Graph).

• Stall time is the time spent polling the worker queues for an available slot
when the master has tasks eligible for execution.
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Figure 3.1: Breakdown of the Cell BE execution times

As shown in Figure 3.1, instantiation time is reduced by 2%-50% by excluding
arguments from the runtime analysis in addition to the benefit from SCOOP’s
optimizations. The benefit of the analysis depends on the complexity of the code
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and the number of safe arguments it can detect. This benefit however is countered
to some extent by a rise in issue time. Overall we get 1%-17% and 0.1%-5% speedup
from SCOOP over the manually written code, with and without SDAM support
respectively.

3.3 Scalability
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Figure 3.2: Scalability of SCOOP-generated code on x86 SMP architecture

Figure 3.2 shows the speedup each benchmark gains from SCOOP inference
of safe arguments, compared to dynamic dependence analysis of all arguments,
with respect to the number of cores executing the program. For instance, note
that Black-Scholes, when executed on a single core, does not benefit considerably
from the SCOOP independence analysis. As the core count grows, however, the
difference in overhead in performing all dynamic dependency checks on the safe
arguments becomes significant.

3.4 Exposing Independencies

In some of our benchmarks, the original code of SMPSs-FFT, Jacobi, HPL and
Multisort did not offer any safe arguments. We tried to place barriers on certain
program points in order to remove some dependencies across loops that contained
tasks and create more safe arguments. This method allowed us to manually find
a great deal more safe arguments on a couple of benchmarks, namely SMPSs-
FFT, SPLASH-FFT, Jacobi and HPL. On the other hand, placing barriers did
not help us find any safe arguments on Multisort, since Multisort does not have
any independencies as the second phase of the algorithm uses the output data of
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Figure 3.3: Comparison between BDDT, SCOOP and hand tuned versions of the
code. on y axis is the normalized execution time

the first one as input, implying RAW dependencies. Furthermore, Multisort as a
recursive application has a lot of do-across parallelism and does not benefit from
barriers placement. Another problem for SCOOP is that although we exposed
more independencies in the code, the analysis failed to detect them, due to it’s
inability to handle complex array indexes in loops and eliminate self dependencies
of out/inout task arguments. For this reason we wrote a third version of the code,
adding barriers and safe arguments manually, using the safe... annotation. In
Figure 3.3 we present normalized breakdowns of the benchmarks’ execution times.
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The breakdown in details:

• instantiation, which is the time needed by the runtime to create a task de-
scription and its arguments’ descriptions, as well as to add it in DAG (De-
pendence Analysis Graph).

• wait, which is the time spent waiting at a barrier.

• execution, which is the time spent executing tasks at the Master due to the
execution window of DAG being full.

• remaining, which is the remaining execution time including the time spent
for running the sequential parts of the code.

Figure 3.3 shows how the hand tuned code performs compared to BDDT and
SCOOP versions of the code. The hand tuned version outperforms both other
versions in the cases that barriers exposed more safe arguments. For the cases
that we do not find more safe arguments by adding barriers, SCOOP’s code and
the hand tuned versions are identical, thus we observe no benefit. Note that,
although GMRES gains nothing by adding barriers, in the hand tuned version we
marked the arguments that the analysis had missed as safe , in order to get some
speedup.

3.5 Extended evaluation of x86 SMP architecture

In section 3.4 we explore ways to expose more independencies. In this chapter
we present the extensive exploration we made to achieve our current understand-
ing. As described in section 3.4, placing barriers brings forth more independencies.
Finding those independent arguments and marking them as safe yields great per-
formance improvement, with an average of 57.57%. However this is not always
possible and depends on the benchmarks nature. Benchmarks with tasks in loops
are more likely to benefit from this technique, while applications with tasks in
recursive functions, like Multisort, or with excessive do-across parallelism , like
GMRES, don’t seam to be able to benefit from barriers.

In the rest of this section we compare several versions of the x86 benchmarks.
First of all we have BASE, which is the application written using the BDDT’s API.
We also run another version of the code using SCOOP’s #pragma directives and
compiled after a SCOOP pass, we call this SB (Scoop compiled Basecase).

For the benchmarks we are able to detect safe arguments examining the code
or using SDAM, we ran two more versions, SBS (Scoop compiled Basecase with
SDAM) and ASA (Scoop compiled with Annotated Safe Args). SBS is the same
code with SB, but in this version we use SDAM to find independencies and generate
appropriate code. ASA is written using SCOOP’s #pragma directives and the
safe(...) notation to manually mark safe arguments. When SCOOP passes ASA,
SDAM is disabled.
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Additionally, for the benchmarks we are able to get better performance adding
barriers to imply more safe arguments, we run two more versions, SABS (Scoop
compiled Annotated with Barriers and using Sdam) and BE (Scoop compiled pro-
grammers Best Effort). SABS is the same code with SBS, but with some barriers
placed in key points to create more independencies. In SABS we use SDAM to
find those extra independencies. BE is the same as SABS but in this version we
use the safe(...) notation to mark the extra safe arguments implied from the
barriers. When SCOOP passes BE, SDAM is disabled.

When a benchmark doesn’t have the SBS and ASA versions, it means that
we were not able to find any safe arguments manually nor with SDAM. When a
benchmark doesn’t have the SABS and BE versions, it means that we were not
able to get any performance improvement placing barriers in order to have more
safe args.

Table 3.3 sums up the properties of each code version. Column SCOOP means
that this versions passes from SCOOP. Column SDAM means that SDAM is en-
abled during the SCOOP pass. Column SAFE ARGS indicates whether safe(...)
notation is used to manually mark safe arguments. Finally BARRIERS column
stands for whether we introduced extra barriers in order to expose independencies.

Initialism SCOOP SDAM SAFE ARGS BARRIERS

BASE % % % %

SB ! % % %

SBS ! ! % %

ASA ! ! ! %

SABS ! ! % !

BE ! ! ! !

Table 3.3: Properties of the different code versions

Running SDAM on the benchmarks with extra barriers does not remove any
dependencies from our benchmarks, thus we omit the SABS bar from the graphs.
This is happening because, although barriers usually enable loops with tasks to
become do-all, SDAM fails to mark all the arguments of a task in a loop as safe,
due to analysis limitations, which are beside the scope of this work. However, as
mentioned earlier, we place barriers in all versions of the benchmarks between the
initialization process and the parallel section, in order to measure the later without
any interference from rogue tasks of the initialization. Because of these barriers
SDAM is able to eliminate some RAW dependencies.

In our evaluation we exclude scalar variables. From this point on, when referring
to safe arguments, we only consider pointers to the actual data of each benchmark,
since it is trivial for both the analysis and the programmer to detect the former
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and their impact on reducing the runtime overhead, which is marginal.
In this section we mainly focus on the performance improvement on 24 cores and

on the total behavior of the different benchmarks versions over different number of
cores.

Plot explanation: On the y-axis is the execution time in milliseconds. On the
x-axis is the number of cores. Each bar shows the breakdown of a benchmark’s
version (described above).

Master’s breakdown:

• instantiate time is the time needed by the runtime to create a task description
and it’s arguments’ descriptions, as well as to add it in DAG (Dependence
Analysis Graph).

• wait time is the time spent waiting at a barrier.

• stall/exec time is the time spent executing tasks at the Master due to the
execution window being full.

• rest time is the time spent for running the sequential parts of the code.

Worker’s breakdown: For the workers we show an indicative but not exact
breakdown of the execution time to runtime overhead and application time. As
there where no significant variations we present the average breakdown.

• overhead is the time spent for the runtime’s mechanisms. Includes task steal-
ing, task dequeue and task completion (release dependencies).

• app time is the time spent executing actual application’s code.

The formula that calculates the actual application time is:
stall/exec time+rest time+(N − 1)× app time

where N is the number of cores.

3.5.1 Black-Scholes

Figure 3.4 shows execution times for BDDT (BASE ), SCOOP base (SB), SCOOP
base with SDAM running (SBS ) and SCOOP with manually annotating safe args
(ASA). We get 2.58% performance improvement from the compiler code generation.
We also observe 69.3% benefit in performance for both SBS and ASA. This is due
to SDAM finding all the safe arguments found manually by examining the code.
Black-Scholes shows that removing overheads can improve the scaling factor of an
application. In more detail in Figure 3.4 we see that Black-Scholes without its safe
arguments marked scales up 12 cores. On the other hand, after running it with the
safe arguments marked we see that it gradually scales till 24 cores.
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Figure 3.4: Black-Scholes Evaluation

3.5.2 SMPSs-FFT

Figure 3.5 shows execution times for the BDDT (BASE ), SCOOP base (SB) and
SCOOP with manually annotated safe arguments and barriers (BE ). FFT compiler
generated code (SB) gives insignificant speedup. Moreover, SDAM fails to find
any safe arguments, even if we add barriers, due to its inability to eliminate self
dependencies , thus bars SABS and SBS were omitted. We manage to find ten safe
arguments by manually tuning the code using barriers, which results in a speedup
of 67.25%.
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Figure 3.5: SMPSs-FFT Evaluation

3.5.3 SPLASH-FFT

Figure 3.6 shows execution times for BDDT (BASE ), SCOOP base (SB), SCOOP
base with SDAM running (SBS ), SCOOP with manually annotating safe argu-
ments (ASA) and SCOOP with manually annotated safe arguments and barriers
(BE ). FFT(SPLASH) compiler generated code (SB) gives insignificant speedup,



3.5. EXTENDED EVALUATION OF X86 SMP ARCHITECTURE 37

thus it was omitted from the plot. In SBS version, however, the analysis finds all
the safe arguments we found manually, resulting in a speedup of 22.61%. By adding
barriers to the code the analysis failed to find any additional safe arguments. How-
ever, we managed to manually discover more safe arguments, achieving a speedup
of 53.55% when using the hand tuned code (BE ).
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Figure 3.6: SPLASH-FFT Evaluation

3.5.4 GMRES

Figure 3.7 shows execution times for BDDT (BASE ), SCOOP base(SB), SCOOP
base with SDAM running (SBS ) and SCOOP with manually annotating safe args
(ASA). We get 1.68% performance improvement from the compiler code genera-
tion. We also observe 5.03% benefit in performance for SBS, while for ASA the
corresponding benefit is 5.4%. This is due to SDAM finding eight out of the eleven
safe arguments found manually examining the code.

Figure 3.7 plots the numbers of a GMRES execution with 512 block size. Using
a 1024 block size reduces the previous numbers from 1.68% for SB to 0%. And
for SBS and ASA versions the 5.03% and 5.4% performance improvement becomes
0.6% and 1.82% respectively. Such results show that small block sizes introduce
greater overheads to the runtime, rendering it less flexible considering the task
data granularity. SCOOP makes the programming model even more flexible by
removing those overheads.

3.5.5 Jacobi

Figure 3.8 shows execution times for BDDT (BASE ), SCOOP base (SB) and
SCOOP with manually annotated safe args and barriers (BE ). Jacobi compiler
generated code (SB) gives insignificant speedup. We are not able to find any safe
arguments neither examining the code nor with SDAM (so SBS and ASA bars
are omitted). We only manage to find safe arguments by placing a barrier af-
ter the main loop of the benchmark, which transforms the inner loop to a do-all
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Figure 3.7: GMRES Evaluation

loop. We observe a speedup of 38.61% due to the manually placed annotations
(BE bar). SDAM fails to detect the safe arguments becoming available after the
barrier placement due to the nested loop accessing blocks in non-sequential order.
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Figure 3.8: Jacobi Evaluation

3.5.6 HPL

Figure 3.9 shows execution times for BDDT (BASE ), SCOOP base (SB) and
SCOOP with manually annotated safe args and barriers (BE ). We observe a 1.37%
speedup from the compiler generated code (SB bar). We did not find any safe ar-
guments neither examining the code nor using SDAM. However, by adding barriers,
we managed to find some safe arguments and get a performance improvement of
59.19% (BE bar). SDAM fails to detect the safe arguments becoming available
after the barrier placement due to complex indexing of the arrays.
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Figure 3.9: HPL Evaluation

3.5.7 Multisort

Figure 3.10 shows execution times for BDDT (BASE) and SCOOP base(SB). Mul-
tisort compiler generated code (SB) gives insignificant speedup. We can not exploit
any safe arguments in Multisort neither using SDAM nor manually examining the
code, even with barrier placement. Multisort does not have any independencies
because the second phase of the algorithm uses the output data of the first one
as input, implying RAW dependencies. Furthermore Multisort, as a recursive ap-
plication, has a lot of do-across parallelism and does not benefit from barriers
placement.
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Figure 3.10: Multisort Evaluation

It’s noticeable that the reduction of issue time implies an increase in stall/exec
time. This is expected in BDDT’s architecture. With faster instantiation times
BDDT’s task execution window gets full earlier and the master thread starts ex-
ecuting tasks in an earlier phase, enabling more parallelism. Also, examining the
breakdowns we can see that the app time is inversely proportional to the stall/exec
time. This is reasonable, because when the Master executes work, it offloads the



40 CHAPTER 3. EVALUATION

workers. However in SPLASH-FFT, Jacobi and GMRES, as mentioned before the
workers’ execution breakdown is indicative.

Our evaluation shows that SCOOP’s optimizations manage to reduce overhead
on some applications, however our hand tuned version of the code shows that there
is room for improvement by using a more precise analysis. Moreover, we manage to
get a substantial speedup in some benchmarks and we believe that using techniques
to remove safe arguments from the runtime analysis, can have an important impact
on reducing overheads.



Chapter 4

Conclusions and Future Work

We present SCOOP, a compiler for a task-parallel extension of C with implicit syn-
chronization. SCOOP targets BDDT, a runtime system that uses dynamic depen-
dence analysis to automatically synchronize and schedule parallel tasks. SCOOP
uses static analysis to infer safe task arguments and reduce the overhead for track-
ing accesses to that memory in BDDT. We have tested SCOOP on a set of parallel
benchmarks, in which it finds and removes unnecessary runtime checks on task
arguments.

SCOOP was able to infer safe task arguments in seven out of the eleven bench-
marks. We compared our results of the static analysis to manually examining the
code and marking indepdendent arguments. Our results show that the hand tuned
code in most cases performed better than the SCOOP generated. However, on cer-
tain cases, the static analysis managed to match the hand tuned code. We believe
that there is potential in our method to reduce runtime overhead, by removing
independent arguments.

Our experience taught us that in order to achieve the best results, the runtime
team must cooperate with the compiler team and co-develop parts of both systems.
This way the compiler team earns a better understanding of the possible problems
and bottlenecks of the runtime, while the runtime team can ask for extra features
and understand the limitations of the compiler.

SCOOP was initiated as an optimization tool. However our exprerince, using
SCOOP and writing benchmarks both with BDDT’s API and SCOOP annota-
tions showed us that SCOOP not only can optimize the resulting program, but can
also help the programmer during the development. Writing benchmarks with the
BDDT’s API is a lot harder than doing the same job with SCOOP annotations.
In our latest work, when porting benchmarks, we first wrote them with SCOOP
annotations. Then after debugging them, we transformed them from SCOOP an-
notations to BDDT’s API calls to create the basecase. SCOOP with some extra
effort can report a few possible errors to the programmer, such as wrong data flow
annotation. A possible scenario would be a function that performs a write access

41
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on one of its arguments and the programmer by mistake annotated this argument
as IN. In this case SCOOP could easily print a warning.

Another possible alternative use of SCOOP would be to use it as a consultant
for task footprints. SCOOP and SDAM with some extension will be able to provide
the programmer with safe but in many cases conservative task footprints. Then the
programmer will be able to have a working application using these footprints and
with some effort remove the conservative annotations and make the application
perform faster.

We currently focus on the region support and some benchmarks using it. As
we discussed in section 2.5, regions introduce great flexibility to task-parallel pro-
gramming models. With hierarchical regions and nested tasks we would be able
to replicate the Sequoia model, in some extend. Enabling the use of recursion in
BDDT. Our next target will probably be porting SCOOP to SCC or Formic [36].
SCC’s code generation should be close to the CELL BE’s one, as both architectures
use the message passing programming model.
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