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Abstract In recent years, heterogeneous computing has emerged as the vital way to increase computers’
performance and energy efficiency by combining diverse hardware devices, such as Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs). The rationale behind this trend is that different parts of
an application can be offloaded from themain CPU to diverse devices, which can efficiently execute these parts
as co-processors. FPGAs are a subset of the most widely used co-processors, typically used for accelerating
specific workloads due to their flexible hardware and energy-efficient characteristics. These characteristics
have made them prevalent in a broad spectrum of computing systems ranging from low-power embedded
systems to high-end data centers and cloud infrastructures.

However, these hardware characteristics come at the cost of programmability. Developers who create their
applications using high-level programming languages (e.g., Java, Python, etc.) are required to familiarize
with a hardware description language (e.g., VHDL, Verilog) or recently heterogeneous programming mod-
els (e.g., OpenCL, HLS) in order to exploit the co-processors’ capacity and tune the performance of their
applications. Currently, the above-mentioned heterogeneous programming models support exclusively the
compilation from compiled languages, such as C and C++. Thus, the transparent integration of heteroge-
neous co-processors to the software ecosystem of managed programming languages (e.g. Java, Python) is not
seamless.

In this paper we rethink the engineering trade-offs that we encountered, in terms of transparency and com-
pilation overheads, while integrating FPGAs into high-level managed programming languages. We present a
novel approach that enables runtime code specialization techniques for seamless and high-performance execu-
tion of Java programs on FPGAs. The proposed solution is prototyped in the context of the Java programming
language and TornadoVM; an open-source programming framework for Java execution on heterogeneous
hardware. Finally, we evaluate the proposed solution for FPGA execution against both sequential and multi-
threaded Java implementations showcasing up to 224× and 19.8× performance speedups, respectively, and
up to 13.82× compared to TornadoVM running on an Intel integrated GPU. We also provide a break-down
analysis of the proposed compiler optimizations for FPGA execution, as a means to project their impact on
the applications’ characteristics.
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1 Introduction

Current systems integrate various compute elements such as CPUs, GPUs, and FPGAs,
as a means to offer high performance and energy efficiency. Despite the ongoing efforts
to provide high-level programming languages for hardware accelerators, programma-
bility challenges are still present depending on the device. In particular, programming
FPGA devices requires a deep understanding of the computing hardware and famil-
iarity with low-level Hardware Description Languages (HDLs) such as Verilog [38]
and VHDL [2, 30].

In the last decade, researchers from industry and academia have innovated towards
mitigating the steep learning curve of FPGAs’ programmability by providing High-
Level Synthesis (HLS) [27] tools and heterogeneous programming frameworks (e.g.,
OpenCL). However, in the realm of managed languages current support for FPGA
execution is still very limited. Although a number of JIT compilers that target GPUs
have recently emerged [1, 13, 14, 31, 42], in the FPGA domain such solutions cannot
be directly applied due to lack of performance portability [29, 43] and the necessity
to expose low-level hardware primitives to the high-level programming models [36].
To benefit from FPGA acceleration of high-level programming languages, developers
must be abstracted away from current FPGA programming norms that require deep
hardware understanding and the usage of low-level programming primitives.
In this paper, we describe our experiences from enabling FPGA acceleration of

managed programming languages in the context of TornadoVM [12]. We describe
the engineering trade-offs we encountered while extending the toolchain with FPGA-
acceleration capabilities analyzing the alternative integration paths we implemented
for various execution scenarios. In addition, we present our preliminary evaluation
results which enacted the implementation of a set of optimizations for specializing
the auto-generated FPGA code during compilation.

In detail, this paper makes the following contributions:
It presents the design and implementation of an open-source end-to-end toolchain
designed to transparently compile and run Java code on FPGAs.
It describes a set of online and offline FPGA execution modes that developers
can use depending on the characteristics of their programs for JIT compiling and
loading pre-compiled binaries, respectively. Morever, it introduces a complementary
emulation mode for fast prototyping.
It introduces a set of compiler and runtime transformations for specializing the
generated FPGA code during compilation.
It evaluates the TornadoVM FPGA extensions and optimizations on a set of Java
benchmarks showcasing end-to-end speedups of up to 19.8×, 224×, and 13.82×
over multi-threaded, sequential, and GPU accelerated code, respectively.
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Table 1 Taxonomy of the state-of-the-art frameworks that target heterogeneous execution
from Java

Frameworks Code
Generation

Run-time
Optim.

HLS Comp.
Mode

Hardware
Platforms

TVM [26] static No No FPGA Pynq SoC
MaxCompiler [25] dynamic No online Maxeler Platform
Aparapi [34] dynamic No offline AMD GPUs, FPGAs
Caldeira et al. [6] dynamic Yes online Intel Harp FPGAs
JOCL [20] dynamic No offline GPUs
TornadoVM [12] dynamic No offline CPUs, GPUs, FPGAs

TornadoVM +
FPGA extensions dynamic Yes

online,
offline,

emulation
CPUs, GPUs, FPGAs

2 Background

In this section we provide an overview of the current solutions for accelerating man-
aged applications (with a focus on Java) on FPGAs (section 2.1) including the starting
point of this work; the original FPGA support of TornadoVM (section 2.2). In addition,
it provides an insight on the performance of the initial FPGA integration (section 2.3)
which motivated the compiler specializations described in section 4.

2.1 Java Execution on FPGAs: Spotting the Gap

Table 1 summarizes the currently available frameworks that enable FPGA acceleration
of Java programs. As shown, the frameworks are analyzed based on the following
four categories:

Code Generation The ability to generate parallel code at compile-time (statically) or
at run-time (dynamically). For example, the code generation from Java to OpenCL
or Verilog during run-time is classified as dynamic.

Run-time Optimizations The ability to automatically specialize code for the target
device at run-time, without user intervention (including code annotations).

HLS Compiler Mode The ability to perform an online or offline compilation from the
generated code to the final FPGA bitstream, via the HLS compilers.

Hardware Platforms The supported hardware platforms for FPGA acceleration.

As shown in table 1, the various frameworks offer different functionalities with
respect to how they perform the FPGA code generation and code optimizations as well
as which platforms they support. In order for FPGA acceleration to become pervasive to
the Java programming language, potential solutions must adhere to the core principles
of the language including runtime optimizations, dynamic code generation, and
hardware-agnostic execution. Based on these principles, we augmented the original
TornadoVM with specific FPGA extensions in order to fulfil those requirements as
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shown in the last line of table 1. The following subsections provide an overview of
TornadoVM and its state of FPGA execution prior to the extensions described by this
paper.

2.2 Background on TornadoVM

TornadoVM enables Java developers to write task-oriented programs that are then
automatically compiled and executed on heterogeneous hardware. Each task is es-
sentially a Java method that is automatically compiled to OpenCL at runtime and
executed on an OpenCL-compatible device (e.g., multicore CPU or GPU). Originally,
the system supported the aforementioned execution flow only for GPUs and CPUs.
To enable FPGA execution, developers must manually compile the auto-generated
OpenCL code, deploy the generated FPGA bitstream, and redirect the execution from
TornadoVM to the FPGA. In addition, the original framework did not perform any
compiler optimizations specifically for FPGAs. All the aforementioned limitations
prohibited the seamless FPGA execution from within TornadoVM similarly to CPUs
and GPUs.

2.3 Initial Evaluation

To assess the performance of the original FPGA support of TornadoVM,1 we performed
all the manual steps described in the previous subsection and ran a set of experiments
for all benchmarks reported by Fumero, Papadimitriou, Zakkak, Xekalaki, Clarkson,
and Kotselidis [12]2 In almost all cases, we noticed that the achieved performance
was slower than the single-threaded Java execution on CPUs. As an example, figure 1
(left) illustrates the relative performance of FPGA execution compared to sequential
CPU Java execution3 when running the Discrete Fourier Transform (DFT) application.
As shown, the FPGA execution performs up to 17% slower (for small datasets) than
CPUs.

After inspecting the generated code, we noticed that the reason behind this perfor-
mance degradation is that TornadoVM was tuned and optimized for CPU and GPU
acceleration rather than FPGAs. Unlike CPUs and GPUs, FPGAs require hardware-
specific annotations to be passed along with the generated OpenCL code in order
for the underlying HLS tools to produce an optimal hardware design. To assess the
impact of these annotations we revised a proof-of-concept in which we started manu-
ally adding OpenCL pragmas to the auto-generated OpenCL kernel. The performance
results achieved through this activity are depicted in figure 1 (right). As shown, the
manually optimized DFT application outperformed the sequential vanilla Java code
executed on the CPU by up to 218 times. These results were in line with the well-
documented performance portability challenges of OpenCL across different hardware
accelerators. Based on our findings, we re-engineered the FPGA execution path of

1 The exact commit point is: 0093ebcf497f40213dd601c636d906823a050594.
2 All benchmarks are publicly available at https://github.com/beehive-lab/TornadoVM
3 See section 5 for the experimental setup.
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Figure 1 TornadoVM FPGA results of DFT: a) un-optimized (left), and b) with manual
optimizations (right)

TornadoVM by making its integration seamless with the programming language (sec-
tion 3) while adding compiler optimization phases to specialize the code for FPGAs
automatically (section 4).

3 FPGA Extensions in TornadoVM

To address the integration and performance portability challenges, mentioned in
section 2, we extended TornadoVM to: a) add support for JIT compilation and em-
ulation mode for seamless execution of Java applications on FPGAs; b) perform a
series of automatic compiler optimizations which aim to replace the manual code
interventions we performed on the OpenCL generated kernels (section 4); and c)
enable users to write a program “once” and “run it anywhere”, even on FPGAs, while
taking advantage of hardware-acceleration to achieve better performance.
Figure 2 presents the extensions we made to TornadoVM, showcasing how the

new approach can be practical for harnessing the FPGA technology within the Java
language. The existing components of TornadoVM are illustrated with dark grey, while
the applied extensions are depicted in pink.

To generate FPGA code, we extended the TornadoVM’s OpenCL backend instead of
implementing a new backend for generating HDL similarly to other approaches [3,
23]. Extending the current OpenCL backend to support seamless FPGA execution has
the following advantages: a) increasing industrial support and maturity of OpenCL
compilers and performance on FPGAs, b) plug-and-play of customized and proprietary
bitstream kernels that follow OpenCL semantics in case we do not have access to
the source code (legacy or licensed code), and c) it is consistent with the rest of the
TornadoVM framework, increasing maintainability.

The remaining of this section describes the individual changes made to the Tor-
nadoVM compiler (section 3.1), runtime (section 3.2), and memory management
(section 3.3).
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Data Flow Analyzer

FPGA
Specific IR

Nodes

Memory Management

FPGA Execution Modes
Execution Engine

Runtime
Bitstream &

Binary Cache

Vendor-dependent HLS OpenCL
Compiler

TornadoVM
IR

OpenCL Code Generation

CPU/GPU FPGA

JIT Compiler

OpenCL 
Compatible 

Devices
FPGA

OpenCL
Code
(.cl)

bitstream

TaskSchedule ts = new TaskSchedule("s0")
 .task("t0", DFT::dft,inReal, inImag, outReal, outImag)
 .streamOut(outReal, outImage);
ts.execute();

Input Code 

TornadoVM

Java Bytecodes

CPU  GPU

TornadoVM API

Task

TaskSchedule

FPGACPU/GPU

Optimization Phases

Figure 2 TornadoVM Overview: the FPGA extensions presented in this work are illustrated
in pink.

3.1 TornadoVM JIT Compiler

As shown in the work-flow presented in figure 2, the input Java code is compiled to
Java bytecodes using the standard Java compiler (javac). Then, the TornadoVM Data
Flow Analyzer [9] exploits the data dependencies and builds an initial Intermediate
Representation (IR) graph of the input program. The generated IR graph is compiled
down to the target architecture following the two-stage compilation approach illus-
trated in figure 3. At the first stage, Java bytecodes are JIT compiled to OpenCL C
while at the second stage the OpenCL C code is compiled to FPGA bitstream by the
vendors’ external toolchains.

During the first-stage compilation, the input IR graph is optimized and specialized
through TornadoVM’s JIT compiler before the final OpenCL C code emission. Since
TornadoVM’s JIT compiler is a superset of the Graal [11, 41] compiler, it inherits both
its existing set of optimizations and its IR representation. Hence, it employs not only
device-specific optimizations and specializations (e.g., for GPUs, multicore CPUs) but
also standard compiler optimizations (e.g., loop unrolling, global value numbering,
common subexpression elimination, etc.) derived from the Graal compiler.
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Bitstream & Binary Cache

TornadoVM JIT Compiler

Intel (aoc) Xilinx (xocc)

1st stage compilation
from Java to OpenCL C

OpenCL C (.cl)

FPGA Bitstream

FPGA-specific IR graph

2nd stage compilation
from OpenCL C to Bitstream

HLS OpenCL Compilers

Java Bytecodes

OpenCL Code Generation
Intel

Backend
Xilinx

Backend

Optimization Phases

Figure 3 Two stage compilation: 1) from Java to OpenCL C, and 2) from OpenCL C to
FPGA Bitstream

HLS Integration After the completion of the first-stage compilation, the generated
OpenCL C code is automatically forwarded to the HLS compilers (e.g., Intel’s aoc);
which subsequently perform the second-stage compilation from OpenCL C into the
FPGA bitstream. Once the FPGA bitstream is generated, it is stored into the bitstream
cache inside TornadoVM. This facilitates the reuse of the bitstreams based on the
requirements of the Java programs. Although the current state of the toolchain
integrates Intel FPGAs, the proposed system has been designed and implemented in a
modular way to support multiple HLS-specific backends. Thus, the toolchain can be
extended with insignificant effort for hosting multiple state-of-the-art HLS compilers,
such as Vivado HLS from Xilinx.

3.2 Extensions to the TornadoVM Runtime

Prior to this work, TornadoVM supported only the ahead-of-time FPGA compilation,
which required users to perform the HLS compilation stage manually in the offline
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mode. In this section we present the various execution modes we added to the runtime
that allow programmers to adapt the code execution based on their requirements.

Execution Modes Figure 4 shows the already existed ahead-of-time mode, along
with our extensions: the full JIT and emulation modes. The provision of these exe-
cution modes allows Java applications to be automatically adapted based on their
requirements.

Ahead-of-Time mode This mode alleviates the overhead of the FPGA synthesis process
by allowing the plugin of a precompiled bitstream to TornadoVM during execu-
tion. The omission of the latency of the second compilation stage (from OpenCL
C to bitstream) makes this mode suitable for applications that are sensitive to JIT
compilation times (e.g., fast start-up applications or low energy requirements). In
addition, since this mode allows users to plug-in their own bitstream implementa-
tions, disaggregated machines can be used for FPGA bitstream generation without
any limitations or licensing issues.

Full JIT mode This mode enables the end-to-end JIT compilation and execution of Java
code onto FPGAs. This is achieved by creating a separate Java thread that makes
direct calls to the vendors’ HLS compilers for OpenCL (e.g., Intel’s OpenCL aoc
compiler for FPGAs). The HLS compilers for OpenCL follow the traditional process
for compiling the OpenCL code into the FPGA bitstream. Once the bitstream is
generated, the runtime system stores it into the bitstream cache and marks the
Java method ready to be executed on the FPGA. Finally, the runtime system loads
the generated binary onto the FPGA device, creates the OpenCL program’s context,
and copies all data required to launch the kernel. In this mode, we enable full
JIT compilation from the original Java source code to a fully functional hardware
design. However, this JIT compilation process typically requires up to two hours
(see section 5) due to the synthesis time required on the FPGA. Thus, the full JIT
mode is mainly suitable for long running and server applications, in which the
compilation time is offset by the speedups achieved from FPGA acceleration.

Emulation mode The emulation mode is used for fast prototyping, initial debugging,
and functional validation of the generated FPGA kernels. This mode is not intended
for any performance evaluation, as the emulated kernel code runs on a CPU thread
and not on the physical FPGA device. On the contrary, this mode is added to aid
developers at the initial stage of development or debugging since it avoids the HLS
compilation overheads and it can provide an estimated view of the resource utiliza-
tion and any compiler warnings associated with the Java code. More importantly,
widely available Java IDEs (e.g., Eclipse, IntelliJ, NetBeans) can be used in software
development for programming and testing FPGA applications. Hence, developers
with no HLS background can experiment by writing pure Java code using standard
development tools and assess whether their code can functionally run on an FPGA.
The use of standard tools in the development process is also applicable to the other
two execution modes.
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Figure 4 TornadoVM’s execution modes. Our extensions are illustrated in pink.

3.3 Memory Management

The memory management between the host and FPGA works as follows: the first
time that our framework utilizes an FPGA, it allocates a large amount of device
global memory that acts as a managed heap (similarly to a Java heap). The rationale
behind this managed on-device heap is to minimize the allocation times on the target
device. Our framework performs only a single allocation while performing all data
transfers between the host and the FPGA transparently to the user. Furthermore,
the proposed toolchain increases the bandwidth between the CPU and the FPGA by
using page-locked (or pinned) memory. This enables OpenCL programs to use Direct
Memory Accesses (DMA), thereby enhancing the performance of memory transfers.
To use pinned memory on the FPGA, we extended the TornadoVM runtime to allocate
memory using the OpenCL flag CL_MEM_ALLOC_HOST_PTR.4 The Java stack-frames
(memory region that includes the return address and addresses of all input/output
buffers on the Java heap) and all Java arrays required for the kernel execution are
copied to this allocated region, which is declared as a read/write buffer.
The extended TornadoVM memory manager copies all data to the FPGA’s global

memory, and it keeps track of all host variables that have been copied to the FPGA.
During the runtime data analysis, our toolchain classifies all arrays that are copied to
the FPGA as read-only, write-only or read-write. Read-only Java arrays are persisted
to the global memory of the device without copying them back to the host’s memory.
On the contrary, write-only and read-write Java arrays are copied back to the host’s
memory in order to make their updated values visible to the Java applications. Since
TornadoVM dispatches and runs OpenCL code on the FPGA, all operations are, by
default, non-blocking. This means that the operations of copy-in, OpenCL kernel
launch, and copy-out are non blocking between the FPGA and themain host. Therefore,
we added an extra barrier in the TornadoVM bytecode level to wait for the last kernel
to be finished before performing the final copy from the device (FPGA) to the host
and obtain the results.

4 https://intel.ly/2J0mQFj, last accessed 2020-09-15
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Listing 1 Java snippet for the dft method
1 private void dft(float[] inreal, float[] inimag, float[] outreal, float[] outimag, int[] inputSize) {
2 for (@Parallel int k = 0; k < n; k++) {
3 float sumreal = 0;
4 float sumimag = 0;
5 for (int t = 0; t < n; t++) {
6 float angle = ((2 * Math.PI() * t * k) / (float) n);
7 sumreal += (inreal[t] * (Math.cos(angle)) + inimag[t] * (Math.sin(angle)));
8 sumimag += -(inreal[t] * (Math.sin(angle)) + inimag[t] * (Math.cos(angle)));
9 }
10 outreal[k] = sumreal;
11 outimag[k] = sumimag;
12 }
13 }

4 Compiler Optimizations for FPGAs

As discussed in section 2.3, although the initial OpenCL-generated code was function-
ally correct, its performance was not portable on FPGAs. To address this challenge, we
introduced a set of compiler optimizations to automatically optimize Java programs
for FPGAs without any modification to the user’s source code.

4.1 Extensions to the JIT Compiler

To enable FPGA-specific optimizations, we extended the Intermediate Representation
(IR) of the JIT compiler with FPGA-related nodes. In a nutshell, the compilation flow
for FPGAs works as follows: first, the TornadoVM runtime invokes the compiler to build
the IR graph that represents the input Java method to be compiled. Consequently, the
extended compiler specializes the IR graph for FPGAs through the introduction of
new nodes and optimization phases. After the code is optimized and specialized for
FPGAs, the final OpenCL C code is generated (figure 4, 1st stage compilation). Finally,
the generated code is handled by our extensions to the runtime system, which drives
the 2nd stage compilation (figure 4) based on the corresponding execution modes.

The introduced FPGA compiler optimizations are: a) thread-scheduling attributes,
b) loop unrolling, and c) loop flattening. Listing 1 shows a Java code snippet for
the dft method that we will hereafter use in order to describe the aforementioned
optimizations. The listed code contains a method with two nested for loops with the
computation residing inside the nested loop. Note that the first loop is annotated (by
the developer) using the Java annotation @Parallel, proposed by Clarkson, Fumero,
Papadimitriou, Zakkak, Xekalaki, Kotselidis, and Luján [9] to program heterogeneous
architectures using TornadoVM. Figure 5 illustrates the compiler transformations that
are automatically applied to the IR graph of the code in listing 1. The left-hand side
shows the IR graph that corresponds to the code after initially invoking the Tornado
compiler. As shown, there are two groups of nodes: data-flow nodes connected by
black dashed arrows and control-flow nodes connected by red arrows. Furthermore,
each method begins with the Start node. The graph in figure 5-a shows two LoopBegin
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Figure 5 IR compiler transformations that are automatically performed by our extensions
to the TornadoVM’s JIT compiler

nodes that correspond to the two loops from the input Java code. To compute the loop
bounds of each loop, a phi node along with an if condition is added in the IR. Since
our compiler extensions are implemented in TornadoVM, they reuse two new nodes
for computing the corresponding indices in OpenCL; namely GlobalID and GlobalSize.

Attributes for thread-scheduling Originally, for kernels targeting OpenCL compatible
GPUs, the IR information containing the global indices was sufficient for thread
indexing. However, by keeping only the default OpenCL global indices, we ended
up generating a kernel designed for single threaded FPGA execution. Consequently,
when launchingmultiple threads on the FPGA, they were pointing to wrongmemory
locations and thus generating erroneous results. To solve this issue, we extended
the IR with a new node for generating OpenCL C attributes before the main kernel.
These attributes specify the thread selection (number of threads per block for
each dimension — 1D, 2D or 3D) with which the kernel should be executed. This
compiler optimization is presented in figure 5-b. A new node called NDRange is
inserted right after the Start node. This node points to an additional data-flow node
that indicates the values for the thread-blocks in 1D, 2D and 3D (x, y, z) respectively.
These values depend on the global size of the compute kernel.

Loop Unrolling The second FPGA optimization we apply is loop-unrolling; a widely
used optimization for improving OpenCL performance on FPGAs [39]. We analyze
whether the inner loop can be unrolled by inspecting the loop bounds. If the
input code contains more nested loops, the compiler always tries to perform loop
unrolling to the innermost loop. If it can be unrolled, our extended TornadoVM
compiler inserts a new control-flow node in the IR before the LoopBegin node of the
corresponding candidate loop for unrolling. Figure 5-c highlights this optimization
in which the inner loop is annotated by the Unroll node to be unrolled. Our loop
unrolling phase uses as a basis the default unroll phase of Graal which means
it considers only loops with up to 128 dependency-free iterations as unrollable.
Consequently, the OpenCL code generator reads the new Unroll node and emits
a pragma unroll in the OpenCL C code, leaving the underneath HLS compiler to
decide the unrolling factor.
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Loop Flattening The final compiler optimization that is applied is loop-flattening. The
original compiler performs node replacement to substitute for loops with the
OpenCL indexing primitives (e.g., get_global_id). However, it maintains the for
loops in the OpenCL C code in case the kernel processes more elements than the
available threads on the target device. Since our extensions to the TornadoVM
compiler specialize the IR for FPGAs, they also specialize the input index space.
Therefore, loop nodes can be safely replaced by the OpenCL intrinsic indices. It
is important to note that the compiler extensions only flatten the loops that are
parallelized, by replacing the loops with the OpenCL indexing primitives. If a
loop is computed sequentially, the compiler will preserve the loop nodes. The loop
flattening optimization is highlighted in figure 5-d, in which the outermost loop
is removed along with every data dependency associated with it. In general, this
optimization leads to the simplification of the physical circuits on the FPGA.

4.2 Generated FPGA-optimized OpenCL C code

Besides the aforementioned FPGA-targeted optimizations, the extended framework
reuses all the compiler optimizations of the original Tornado compiler [9] such
as partial escape analysis, dead code elimination, constant propagation, etc. After
performing all compiler transformations and optimizations, the toolchain invokes the
OpenCL code generator.
Figure 6 provides a sketch of the generated OpenCL code for FPGAs reflecting all

described optimizations for the input Java code of listing 1. The left side of figure 6
shows the generated OpenCL code without automatically applying the implemented
compiler optimizations, while the right side shows the generated code highlighting the
outcomes of the compiler optimizations. The yellow block on the right side highlights
the attribute for determining the number of work-items (threads) that is used for
thread-scheduling on the FPGA. In our case it is set to 64 elements, as this number has
been shown to offer maximum performance on Altera FPGAs [35, 40]. The green-block
shows that the outer loop of the orange-block is flattened and the remaining loop
is only indexed by the get_global_id OpenCL intrinsic. This optimization simplifies
the generated hardware circuits on the FPGA and, therefore, increases performance.
Finally, the blue-block highlights the loop unrolling for the FPGA with a factor of two
through the pragma unroll OpenCL Intel FPGA directive before the innermost loop.

Once the OpenCL FPGA code is generated, we call the underlying OpenCL compiler
(e.g., the Intel aoc compiler) and compile the OpenCL C source code to the FPGA
bitstream as explained in section 3.

4.3 Current Limitations

Although the extended framework provides a seamless way to compile, execute and
rapidly prototype Java code on FPGAs, it still poses some limitations that prevent
it from achieving higher performance. Examples include the support for fine-grain
memory, such as private and local, and the exploitation of advanced OpenCL features
such as pipes for direct intra-kernel communication.
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__kernel void compute(__global uchar *_heap_base, 
                      ulong _frame_base, … ) {
// variable declaration
...
__global ulong *_frame=(__global ulong*) 
&_heap_base[frame_base];

base0 =  (ulong) _frame[6];
base1 =  (ulong) _frame[7];
base2 =  (ulong) _frame[7];
tid   =  get_global_id(0);             
...
i8  =  *((__global int *) &_heap_base[base0]);
for(;tid < maxElements) {
  ...
  f10 = 0.0F;
  i11 = 0;
  for(;i11 < i8;) {
      ...
  }
  ul_38 = base1 + index;
  *((__global float *) &_heap_base[ul_38]) =
  ul_37 = base2 + index;
  *((__global float *) &_heap_base[ul_39]) =
  i_40 = get_global_size(0);
  i_41 = i_40 + tid;
  tid = i_41;
}

// Scheduling attributes
__attribute__((reqd_work_group_size(64,1,1)))    
__kernel void compute(__global uchar *_heap_base, 
                      ulong _frame_base, … ) {
// variable declaration
...
__global ulong *_frame = (__global ulong *) 
&_heap_base[_frame_base];

base0 =  (ulong) _frame[6];
base1 =  (ulong) _frame[7];
base2 =  (ulong) _frame[7];
tid   =  get_global_id(0);             // Loop flattening
...
i8  =  *((__global int *) &_heap_base[base0]);
...
f10  =  0.0F;
i11  =  0;
#pragma unroll 2     // Loop unrolling with factor 2    
for(;i11 < i8;) {
   …                
}                   
ul_38  =  base1 + index;
*((__global float *) &_heap_base[ul_38])  =  result1;
ul_37  =  base2 + index;
*((__global float *) &_heap_base[ul_39])  =  result2;
}

Figure 6 Sketch of the generated OpenCL code specialized for FPGAs

5 Evaluation

5.1 Experimental Methodology

We evaluate the performance of the FPGA executed code of our toolchain against the
peak performance of single and multi-threaded Java implementations compiled with
the server compiler (C2) of OpenJDK [28]. In addition, we performed a comparative
evaluation of the FPGA accelerated code against an Intel HD Graphics 630 integrated
GPU. In order to guarantee that the JVM has been warmed up, we perform up to 50
iterations per benchmark and then we report the mean of the consequent 10 runs.
To ensure the functional correctness of the generated FPGA code (section 3.2), we
validated all benchmarks in all execution modes.

The time for the FPGA-executed code is also reported using the mean of 10 runs,
similarly to the CPU-executed code. Furthermore, all reported numbers correspond
to end-to-end executions, which include the times for loading the bitstreams into
the FPGA, executing the kernels, copying the data from the main host to the FPGA
memory, and copying back the data from the FPGA memory to the host (CPU). Finally,
we evaluate each benchmark against three different workloads—small, medium, and
large—with data sizes increasing by an order of magnitude, varying from 1MB to
540MB. The size of the large workloads corresponds to the maximum size permitted
by the HLS compiler for mapping each generated circuit on the FPGA device.
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Table 2 Array length and the input/output data sizes of the benchmarks

Benchmark Array Length Input (MB) Output (MB)
Small Medium Large Large Large

VectorAdd 32768 1048576 67108864 540 268
Grayscale 32768 1048576 33554432 268 140
BlackScholes 256 1048576 33554432 268 536
RenderTrack 64 1024 8192 268 200
N-Body 256 16384 32768 6 3
DFT 64 65536 262144 2 1

5.1.1 Benchmarks
For the evaluation5 we use two standard benchmarks (VectorAdd and BlackScholes),
two variations of computational dwarfs (NBody and DFT), and two computationally
intensive kernels for image processing (RenderTrack and Grayscale). For all benchmarks
we provide both sequential and multi-threaded Java implementations that have been
ported and verified using various data sizes. Table 2 presents the actual lengths of the
arrays that correspond to the three workloads (small, medium and large) used for
evaluating each benchmark. Moreover, we present the size of the input/output data
for the large workloads in Megabyte (MB).

5.1.2 Experimental Setup
The results presented in this section are conducted on a computer system consisting
of an Intel i7-7700K CPU, clocked at 4.20GHz, featuring 64GB of RAM and a Nallatech
385A Accelerator Card attached via PCI-e. The accelerator card features an Intel Arria
10 FPGA (10AX115N3F40E2SG) and two banks of DDR3 SDRAM with 4GB each. The
system runs CentOS 7.4 with Linux kernel 3.10. In addition, the Arria 10 FPGA offers
native IEEE 754 single-precision floating-point operations through its DSP blocks [17].
We use OpenCL 1.0 with Intel FPGA SDK 17.1 and the OpenCL HPC Board Support
Package (BSP). Note that the FPGA frequency for all the kernels is automatically
determined by Intel’s OpenCL compiler and ranges from 176 to 218 MHz. For all
experiments we used the Java OpenJDK 1.8.0_131 64-Bits (C2 compiler) with the
Java Virtual Machine Compiler Interface (JVMCI) 6 enabled and 16GB of Java heap
memory.

5.2 Performance Analysis

We evaluate the proposed system in terms of execution speedup over three differ-
ent Java execution scenarios. The first two concern the performance acceleration
over sequential and multi-threaded Java execution, while the last one compares the
specialized FPGA execution against an Intel integrated graphics card.

5 All benchmarks are publicly available at https://github.com/beehive-lab/TornadoVM.
6 https://openjdk.java.net/jeps/243
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Figure 7 Speedup of Intel Arria 10 FPGA against sequential Java for small, medium and
large data sizes
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Figure 8 Speedup of Intel Arria 10 FPGA against multithreaded Java (8 threads) for small,
medium and large data sizes
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Figure 9 Speedup of Intel Arria 10 FPGA against Intel HD Graphics 630 for small, medium
and large data sizes

FPGA versus sequential Java code Figure 7 shows the performance of the FPGA exe-
cuted code against the sequential Java code. As shown, for small workloads FPGA
execution exhibits performance slowdowns across all benchmarks except for DFT. This
is due to the fact that the time spent in data transfers is significantly higher than the
time of the FPGA computation. In the case of memory-bound benchmarks such as
VectorAdd, the performance slowdown can reach up to 0.002x . Regarding Grayscale,
BlackScholes and RenderTrack, although they perform lower compared to sequential
Java for small workloads, they show performance scalability while increasing data
sizes, with peak speedups of 11x , 15x and 30x respectively. Moreover, NBody shows
similar behaviour with a peak speedup of 83x . Finally, for highly computational bench-
marks, such as DFT, the FPGA outperforms the CPU-executed sequential Java code for
all input sizes by up to 224x .
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FPGA versus multithreaded Java code Figure 8 shows the performance of the FPGA
executed code against the multithreaded Java code. All benchmarks utilize the maxi-
mum number of available threads in the system (eight), except RenderTrack for which
Hyper-Threading was deactivated since it was resulting in performance degradation. As
shown in figure 8, for large data sizes FPGA execution outperforms the multithreaded
Java implementations from 1.62x up to 19.82x . However, for small and medium input
data sizes, the multi-threaded Java code outperforms the FPGA executed code with
the exception of the RenderTrack benchmark. Again, this is due to the overhead of
copying data to and from the FPGA.

FPGA versus an Intel HDGraphics 630GPU Figure 9 shows the performance of the FPGA
executed code against TornadoVM running on an Intel HD Graphics 630 integrated
GPU. The local- workgroup configuration is not manually tuned, instead the local_
work_size attribute is left empty for the clEnqueueNDRangeKernel. Therefore, the Intel
driver, and its OpenCL implementation will automatically determine how to split the
global work-items. As shown in figure 9, for all the benchmarks except NBody and
Blackscholes, for large data sizes, FPGA execution outperforms the Intel Graphics
card up to 13.82x . For medium-sized workloads performance varies depending on the
application. However, for small sizes the FPGA always performs worse than the Intel
HD Graphics card due to the overheads which occurs for copying the data to/from
the device. This behaviour is expected and for such reason it is expected to use the
FPGA for acceleration in cases where highly dense workloads are present.

5.2.1 Runtime Overhead Analysis
To further understand the performance of the system, we performed a breakdown
analysis of the end-to-end execution times of all benchmarks, as presented in figure 10.
We analyze the execution times only for the largest input data sizes in order to
highlight the impact of the data transfers between the host and the device memories.
Each bar has four parts which correspond to: a) kernel execution time on the FPGA
(Kernel), b) data transfer time from host to device (H2D), c) data transfer time from
device to host (D2H), and d) the (Rest). The Rest includes the time for loading the
binary on the FPGA and initializing the OpenCL context of each kernel.
Figure 10 shows that up to 18% is spent in transferring data from the host to the

FPGA device (H2D) and backwards (D2H). In particular, VectorAdd, BlackScholes
and Grayscale spent up to 10%, and RenderTrack up to 18% of their total time in
data transfers. On the contrary, the Kernel execution time is up to 99% for both
computationally intensive benchmarks; NBody and DFT.
The VectorAdd benchmark is a special case because it exhibits slowdowns, as illus-

trated in figure 7, even though the kernel execution percentage is large enough to
anticipate performance improvements. The reason is that this benchmark is memory
intensive and the current version of the toolchain does not support memory-specific
optimizations (section 4.3) that could increase its performance. Examples of such opti-
mizations are auto-vectorization support for load and store operations in combination
with local memory. Finally, the time for loading the binary and initializing OpenCL
contexts (Rest) across all benchmarks is negligible.
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Figure 10 Execution time breakdown

In a nutshell, our findings in figures 7 to 9 show that due to the selection of compute-
intensive benchmarks, the performance scales while increasing the input size. The
only exception is for VectorAdd, in which the Java single-threaded (figure 7) and
multi-threaded (figure 8) implementations outperform the FPGA execution for all
data sizes. However, as shown in figure 9, the performance of the FPGA execution
also scales for different data sizes, when comparing against the Intel integrated GPU.
Since the majority of the time for all benchmarks is spent during the kernel execution,
the cost to copy data from the host to the device, and backwards, is not a performance
bottleneck.

5.2.2 Optimization Phases Breakdown
Table 3 presents a breakdown analysis for the contribution of each optimization phase
to the overall performance. We show the performance obtained after applying the
optimizations in three phases. The first phase includes only the thread scheduling
(TS) optimization and shows two different thread-block configurations; one with 32
threads and another one with 64 threads.7 As shown, performance increases by up to
35 times and 56 times when applying thread-scheduling with block sizes 32 and 64,
respectively.
The second phase applies loop unrolling (LU) optimization on top of TS. By per-

forming this combination (TS_64 + LU), performance increases up to 214 times (3.8
times improvement). Finally, if we combine the previous optimizations with loop
flattening (TS 64 + LU + LF), performance increases by up to 224 times.

5.3 HLS Compilation & Binary Loading

Table 4 shows the HLS compilation times, binary loading times, and the sizes of the
generated FPGA bitstreams for each benchmark. The HLS compilation time regards
the 2nd stage compilation (section 3.2) and it is the time spent for compiling the

7 The selection of the thread-block configurations was taken after conducting a series of
test-runs with varied sizes and selecting the best performing ones.
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Table 3 The impact of each optimization phase in performance. The first optimization
phase includes Thread-Scheduling (TS), the second phase applies Loop Unrolling
(LU) along with scheduling with 64 threads (TS_64). The final phase includes all
previous optimizations and Loop Flattening (LF).

Benchmark TS TS_64 + LU TS_64 + LU + LF

TS_32 TS_64

VectorAdd 0.0002 × 0.0001 × NA 0.07 ×
Grayscale 9.42 × 10.01 × NA 11.08 ×
BlackScholes 15.85 × 15.97 × NA 15.06 ×
RenderTrack 21.23 × 28.16 × NA 30.52 ×
NBody 11.04 × 31.20 × 66.75× 83.35 ×
DFT 35.44 × 56.31 × 214.64× 224.32 ×

Table 4 Bitstream size, loading, and HLS times

Benchmark Bitstream Size
(MB)

Load
Bitstream

(ms)

HLS
Compilation
(minutes)

VectorAdd 172 22 48
Grayscale 173 23 52
BlackScholes 174 24 54
RenderTrack 173 23 44
NBody 173 24 114
DFT 173 22 68

specialized generated OpenCL C code to bitstream. The binary loading time is the
time required to load the bitstreams and initialize the OpenCL context on the FPGA on
behalf of the running program. As shown, while the binary loading time is in the range
of milliseconds, the HLS compilation time can take up to 114 minutes to complete.
Furthermore, the HLS compilation time includes the timing for placement and routing,
which is a process strongly related to the vendor tools and the complexity of the
generated kernels. For instance, the NBody kernel reports the longest compilation time
as it includes the loop unrolling optimization which utilizes more private memory
on the FPGA and thus higher BRAM resources (table 5). The increased latency in
HLS compilation times was the motivation for providing a set of execution modes in
TornadoVM that can either perform a whole compilation for FPGAs at runtime (Full
JIT), or load the bitstream of pre-compiled kernels (AOT). Nevertheless, the OpenCL
drivers for Xilinx and Intel are evolving quickly, thereby reducing the compilation
time and making JIT compilation more affordable [18]. Finally, as shown in table 4,
both binary loading times and bitstream sizes are consistent among the benchmarks.
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Table 5 Resource utilization as reported by AOC

Benchmark LUTs FFs DSPs BRAM

VectorAdd 145 535 (19.5%) 275 521 (18.4%) 72 (3%) 570 (39.4%)
Grayscale 117 928 (15.7%) 230 040 (15.4%) 72 (3%) 494 (34.0%)
BlackScholes 186 348 (24.9%) 306 361 (20.5%) 490 (20.7%) 935 (64.7%)
RenderTrack 118 582 (15.9%) 238 742 (16%) 72 (3%) 514 (35.5%)
NBody 174 036 (23.3%) 329 764 (22.1%) 120 (5.1%) 1291 (89.3%)
DFT 146 418 (19.6%) 264 652 (17.7%) 109 (4.6%) 748 (51.7%)

Resources 747 080 1 494 160 2367 1446

5.4 Resource Utilization

Table 5 shows the FPGA’s resource utilization of four different hardware components—
Look Up Tables (LUTs), Flip Flops (FFs), Digital Signal Processing (DSPs), and Memory
Blocks (BRAM)—for each benchmark. As shown, the utilization of the LUTs varies
between 15.9% and 24.9% of the total capacity of the FPGA. In particular, BlackScholes
utilizes more LUTs and DSPs than the rest of the benchmarks, as the generated OpenCL
C code contains 216 lines of code with complex control flow. The utilization of DSPs is
between 3% and 5.1% for all benchmarks, with the exception of BlackScholes which
is at 20.7% again due to its code complexity. Regarding BRAM utilization, NBody is a
special case occupying up to 89.3% of the available resources because our extensions
to the TornadoVM JIT compiler unrolls two of the innermost loops.

Overall, the results indicate that the current set of benchmarks utilizes roughly one
fourth of the available resources on the FPGA, except BRAMs. BRAMs show higher
utilization due to loop unrolling, which duplicates the memory accesses and the
intermediate stored values.

5.5 Discussion on the Suitability of FPGA Acceleration for Java Applications

By carefully analyzing the benchmarks and the obtained results of FPGA execution, we
revised a set of technical guidelines to answer the question of when FPGA acceleration
is suitable for Java applications.

Applications not suitable for FPGAs Applications such as VectorAdd in which the run-
time needs to copy a significant amount of data to compute just a few operations
(one in the case of VectorAdd) are not suitable for FPGA execution. This is due to the
fact that modern CPUs which operate at much higher frequency than FPGAs (GHz
versus MHz), can perform a larger number of such operations in less time. In more
detail, the FPGA operates at up to 300MHz while the CPU up to 4.2 GHz. In addition,
the Java HotSpot compiler makes use of high-performance vector instructions and
operations (e.g., fused multiply-add (FMA)).

Applications suitable for FPGAs Applications such as BlackScholes, Grayscale, NBody,
DFT and RenderTrack exhibit significant speedups when operating over large data sizes.
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Figure 11 Classification of the state-of-the-art frameworks that target FPGA hardware from
managed languages

These applications make use of the specialized hardware on the FPGA for accelerating
the abundance of math operations they contain (e.g., sine and cosine). This is due
to the fact that FPGAs can perform these operations in few clock cycles. Although,
this class of applications exhibits speedups for large datasets, it is expected that
their performance will increase if further memory optimizations are implemented in
TornadoVM. Nevertheless, the trade-off between computational acceleration and data
transferring overheads will be present for all applications.

6 Related Work

The prior work on FPGA acceleration of managed languages (e.g., Java, Python, C#)
can be classified into the two categories illustrated in figure 11. The first category
regards languages that interface statically with pre-compiled FPGA designs, while the
second category includes languages that generate FPGA code dynamically.

6.1 Interfacing with static FPGA designs

Bellows and Hutchings [5] introduced the JHDL framework which describes how
a Java interface should be constructed for accessing the FPGA hardware by calling
existing bitstreams. Guccione, Levi, and Sundararajan [16] presented the JBits API that
requires hardware knowledge in order to leverage hardware acceleration, assuming
that a compiler can be used to automate code generation without providing the
necessary information.
Additionally, several frameworks have been proposed for applications written in

domain specific languages (DSL) that provide bindings or build on top of other
managed languages. These frameworks compile the DSL applications into hardware
units that can be accelerated at runtime on top of general purpose FPGAs. Moreau,
Chen, and Ceze extended TVM [7, 26], an optimizing compiler for deep learning
applications, to utilize FPGAs. Margerm, Sharifian, Guha, Shriraman, and Pokam [24]
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presented the TAPAS framework that analyzes task dependencies in the compiler
graph and generates a data-flow processing unit that is transparently executed on the
FPGA.

6.2 Dynamic FPGA code generation

Several frameworks that enable FPGA-based acceleration for managed languages
have been recently introduced. Clow, Tzimpragos, Dangwal, Guo, McMahan, and
Sherwood [10] presented the PyRTL framework which compiles Python programs onto
Verilog. However, it requires programmers to be familiar with specific design practices
and hardware primitives. Fumero, Papadimitriou, Zakkak, Xekalaki, Clarkson, and
Kotselidis [12] and Segal, Margala, Chalamalasetti, and Wright [34] extended the GPU
capabilities of two Java-based frameworks TornadoVM and APARAPI, respectively,
to run on OpenCL compatible hardware. However, the proposed frameworks did
not support any automatic optimization phases and several kernels required manual
intervention in order to be synthesized on FPGA boards. Greaves and Singh [15]
presented the Kiwi library that exposes various custom attributes to the programmers,
and generates Verilog HDL from the C# input code. Caldeira, Penha, Braganca,
Ferreira, Nacif, Ferreira, and Pereira [6] presented a framework that compiles Java
programs into Verilog HDL. However, further interpolation is required to imprint the
resulting Verilog code into the FPGA of Intel HARP platforms. In addition, Skalicky,
Monson, Schmidt, and French [36] proposed Hot&Spicy to compile code written in a
subset of Python into HLS C code and transparently invoke the Xilinx SDSoC HLS
tool to produce the FPGA binary.
Furthermore, several approaches have proposed other domain specific languages

(DSLs) (e.g., Lime [3], Language Integrated Query (LINQ) [8], Delite Hardware
Definition Language (DHDL) [23], Spatial [22]) to generate code for various FPGA
hardware description languages [21]. Auerbach, Bacon, Cheng, and Rabbah [3] pre-
sented the Lime framework within the streaming domain that compiles programs to
Java, C and Verilog. Chung, Davis, and Lee [8] proposed the LINQits framework that
allows various Big Data workloads to be compiled by the Dandelion [33] compiler and
accelerated on FPGA hardware. However, LINQits does not support automatic HLS
compilation and requires programmers to introduce the HLS directives. Koeplinger,
Prabhakar, Zhang, Delimitrou, Kozyrakis, and Olukotun [23] also required users to
write their program into the DHDL language which subsequently compiled into MaxJ;
a low-level Java-based language that allows the generation of hardware for the Max-
eler platform with the usage of the MaxCompiler. In addition, Koeplinger, Feldman,
Prabhakar, Zhang, Hadjis, Fiszel, Zhao, Nardi, Pedram, Kozyrakis, and Olukotun [22]
proposed the Spatial language and compiler, as an extension to DHDL, thereby allow-
ing developers to gain more control over the memory hierarchy from the programming
language.
Moreover, a couple of frameworks leverage the abstraction that compiler interme-

diate representations (IRs) provide to dynamically generate HLS-compatible input.
Sozzo, Baghdadi, Amarasinghe, and Santambrogio [37] introduced FROST, a unified
backend for targeting FPGAs for DSLs, such as Halide [32] and Tiramisu [4]. FROST
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provide its own IR along an IR optimizer with FPGA-oriented passes and a schedul-
ing co-language to allow users to specify optimizations. Izraelevitz, Koenig, Li, Lin,
Wang, Magyar, Kim, Schmidt, Markley, Lawson, and Bachrach [19] presented FIRRTL
a Flexible Intermediate Represe ntation for RTL. FIRRTL is integrated with Chisel
which is a hardware design language that facilitates advanced circuit generation and
design reuse for both ASIC and FPGA digital logic designs. In addition, it transforms
target-independent RTL into design-specific RTL through a number of optimization
steps such as simplifying transformations, analyses, optimizations, instrumentations,
and specializations.

To the best of our knowledge Hot&Spicy [36] is the only framework that accepts a
program written in a managed language (i.e., Python) and produces an FPGA binary.
Nonetheless, Hot&Spicy requires the programmer to add hardware-specific primitives
in Python; and transforms the input program to contain the appropriate wrapper
bindings for interfacing with the generated hardware design. Our work differs from
all aforementioned frameworks since it: a) automatically and dynamically compiles
Java programs onto optimized FPGA binary code, b) it does not require the use of
hardware-specific directives from programmers, and c) it is able to accelerate existing
Java applications without any modifications.

7 Conclusions

This paper presents a practical approach that augments managed languages with the
ability for seamless and efficient FPGA code execution. It presents the engineering
challenges and trade-offs when integrating the different toolchains for achieving end-
to-end JIT compilation of Java code to FPGA bitstreams. In addition, we showcase how
specific specialization and optimization phases can be transparently added in order
to increase the performance of unoptimized FPGA code. We prototyped our approach
in the context of TornadoVM, by introducing a two-stage compilation process and a
set of FPGA-specific specialization techniques. We evaluated the proposed framework
against a set of Java benchmarks executed on an Intel FPGA showcasing speedups
up to 19.8, 224, and 3.82 times over multi-threaded, sequential, and GPU-accelerated
Java code, respectively.

In the future we plan to further extend our work to enable automatic use of private
and local memory of FPGAs, and to enhance the compiler in order to exploit more
advanced OpenCL features, such as channels and pipes.
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