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Abstract
Managed analytics frameworks (e.g., Spark) cache inter-

mediate results in memory (on-heap) or storage devices (off-
heap) to avoid costly recomputations, especially in graph
processing. As datasets grow, on-heap caching requires more
memory for long-lived objects, resulting in high garbage col-
lection (GC) overhead. On the other hand, off-heap caching
moves cached objects on the storage device, reducing GC
overhead, but at the cost of serialization and deserialization
(S/D).

In this work, we propose TeraHeap, a novel approach for
providing large analytics caches. TeraHeap uses two heaps
within the JVM (1) a garbage-collected heap for ordinary
Spark objects and (2) a large heap memory-mapped over
fast storage devices for cached objects. TeraHeap eliminates
both S/D and GC over cached data without imposing any
language restrictions. We implement TeraHeap in Oracle’s
Java runtime (OpenJDK-1.8). We use five popular, memory-
intensive graph analytics workloads to understand S/D and
GC overheads and evaluate TeraHeap. TeraHeap improves to-
tal execution time compared to state-of-the-art Apache Spark
configurations by up to 72% and 81% for NVMe SSD and
non-volatile memory, respectively. Furthermore, TeraCache
requires 8× less DRAM capacity to provide performance
comparable or higher than native Spark. This paper opens up
emerging memory and storage devices for practical use in
scalable analytics caching.

1 Introduction

Analytics workloads typically perform iterative computations
over large datasets until a convergence condition is met. Each
iteration produces new transformations of previously com-
puted data, e.g., with map operation. Such intermediate results
can either be cached for later use or recomputed when they are
needed. Compute caches improve performance by up to two
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orders of magnitude (100×) compared to recomputing inter-
mediate results [59]. For this reason, contemporary managed
big-data analytics frameworks widely used by industry, such
as Spark [61], employ a compute cache to store intermediate
results and avoid expensive recomputation.

As datasets expand in size [42,44], they demand larger com-
pute caches [55]. The size of compute caches is proportional
to the data footprint during computation, including interme-
diate results. Our evaluation shows that in Spark, the size of
cached data footprint is typically up to 20× larger than the
input dataset. Thus, compute caches need to grow to sizes
larger than the DRAM available to Spark applications, often
by more than one order of magnitude.

The contemporary practice in Spark is to place the compute
cache partly in memory (on-heap) and partly on a storage de-
vice (off-heap). On-heap caching increases garbage collection
(GC) cost as it fills the heap with long-lived objects that are
scanned at every GC cycle [53]. Our evaluation shows that
with on-heap caching GC time reaches up to 79% of total exe-
cution time. Once the compute cache outgrows the JVM heap,
Spark serializes cached objects and moves them to persistent
storage, introducing serialization/deserialization (S/D) over-
head. This overhead worsens as storage technology improves
and the performance gap between the processor and memory
narrows [35, 41, 49]. Thus, S/D is expensive and unfriendly
to technology trends that dictate less data movement [34].

Prior efforts [3,6,7,22,27,29,32,33,36,37,47] either focus
on reducing GC or S/D overheads. On the GC side, one line
of prior works [22, 32, 33, 36, 37] uses runtime and compiler
support and customized annotations to the application code
for keeping long-lived objects in a region-based (off-heap)
native memory. Unfortunately, these prior approaches (1) re-
quire changes to the application code, (2) support specialized
objects only, and (3) do not address mitigating the S/D cost.
On the other hand, recent work proposes to use non-volatile
memory (NVM) to overcome the DRAM capacity limita-
tions. More specifically, Panthera [47] uses NVM to scale
on-heap caching in Spark by extending the managed heap
over hybrid DRAM and NVM. Unfortunately, NVM-backed
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managed heaps exacerbate the GC overhead as traversals over
cached data objects in NVM are extremely slow. Recently,
new libraries [3, 6, 7] attempt to make S/D more efficient,
but they still result in high S/D overhead for emerging big
data frameworks. Other efforts [27,29] propose optimizations
for reducing S/D but demand custom hardware extensions
without mitigating the GC overhead.

We propose TeraHeap, which extends the JVM to use a
second, memory-mapped heap (H2) for cached objects and
eliminates both GC and S/D overheads for cached interme-
diate results. TeraHeap allows direct, transparent access to
cached objects, both for reads and updates, eliminating the
cost of transferring objects between on-heap and off-heap
as in the S/D approach. Our design introduces four essential
functions:

First, TeraHeap allows moving arbitrary objects in H2 and
ensures the correctness of the Java memory model. In the
existing Spark caching approaches, Spark moves in the off-
heap compute cache, serializable objects only [38]. Therefore,
TeraHeap offers higher flexibility and enables various policies
to populate H2, minimizing references between H2 and the
garbage collected heap (H1). To achieve this, we find that an
appropriate policy is to compute each cached data object’s
transitive closure and then move to H2 only the non-transient
fields (serializable fields).

Second, TeraHeap tracks references form H1 to H2 (for-
ward) and from from H2 to H1 (backward) without extensive
cost, using additional card tables. To reduce GC cost, Tera-
Heap fences the garbage collector from following forward
references to avoid traversing objects in H2. In addition, Ter-
aHeap has to deal with backward references from H2 to H1,
as objects in H1 are garbage collected and change locations
during both minor and major GC. For this reason, TeraHeap
needs to keep track of updates during JVM post-barriers. Ter-
aHeap properly handles barriers in interpreted Java code and
the C1 and C2 just-in-time (JIT) compilers.

Third, TeraHeap leverages the Spark persist() operation to
inform the JVM about which data objects to move from H1
to H2. Thus, TeraHeap requires no modifications to existing
Spark application code compared to prior work [36, 37] that
requires extra annotations or static analysis [47].

Fourth, TeraHeap exploits the grouped life-time property
of cached data objects that tend to leave the cache at the same
time when the application invokes unpersist(). TeraHeap orga-
nizes H2 on the storage device in regions to facilitate bulk-free
operations instead of reclaiming individual objects, reducing
the I/O traffic to the device. TeraHeap maintains reachability
information from external objects to regions and reclaims
entire regions when they become unreachable.

We implement TeraHeap in Oracle’s production Java run-
time (OpenJDK-1.8), extending the Parallel Scavenge garbage
collector. We also modify the interpreter and the C1 and C2
Just-in-Time (JIT) compilers to support updates in TeraHeap
during application (mutator) execution.

We evaluate TeraHeap in Spark using five broadly deployed
memory-intensive graph analytics workloads. TeraHeap can
efficiently use different types of devices, including block-
addressable NVMe and byte-addressable NVM. Our evalua-
tion uses datasets that demand compute caches several times
larger than the dataset. We find that TeraHeap improves over-
all performance by up to 72% for NVMe SSD and up to 81%
for NVM devices compared to state-of-the-art Spark config-
urations. Regarding DRAM needs, TeraHeap consumes 8×
less DRAM capacity for similar or better performance than
native Spark.

Overall, this paper makes the following contributions:

1. We investigate and show that cached objects in Spark are
not accessed for extended intervals of time, indicating
that we can place these objects outside the managed heap
for extended periods of execution.

2. We design TeraHeap that eliminates S/D for cached data
by placing arbitrary objects in a large memory-mapped
heap, providing the JVM direct access to cached data
using load/store operations. Our design precludes expen-
sive lookup mechanisms as the OS performs the transla-
tion.

3. We propose the first dual-heap design (memory and stor-
age) that eliminates GC for the second (storage) heap,
avoiding expensive scans of cached data objects while
ensuring the correctness of the Java memory model by
handling references across heaps.

4. We propose a bulk-free mechanism (appropriate for
Spark cached objects) that reclaims entire regions of
cached data.

2 Background and Motivation

Spark [61] is a widely used framework for large-scale ana-
lytics. It consists of a driver process and multiple executor
processes. The main data abstraction in Spark is the Resilient
Distributed Dataset (RDD) [60]. At a low level, RDDs are
read-only collections of similarly typed objects partitioned
across a cluster. Spark programs consist of a set of transforma-
tions and actions over RDDs. Spark evaluates RDDs lazily;
transformations are not evaluated until an action is performed
on some RDD. Actions trigger the execution of Spark jobs,
which compute all RDDs in their lineage.

To avoid time-consuming [51] recalculation of commonly
used RDDs across different jobs, Spark offers developers the
flexibility of caching RDDs via its persist() API [45]. Users
can persist RDDs in different storage levels: memory in a
deserialized form, disk in a serialized form, or both.

Spark executors run in JVM instances and allocate memory
on heap, which resides in DRAM. A Spark executor logi-
cally divides its memory into two main spaces (Figure 1(a)):
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Figure 1: (a) Vanilla Spark: off-memory caching via S/D. (b) TeraHeap: on-heap RDD cache over a memory-mapped fast storage
device SDR1 +SDR2 = SDRAM (SDRAM=DRAM size).

(1) execution memory for computation (shuffle, joins, sorts,
and aggregation operations) (2) storage memory (compute
cache) for caching. Spark initially reserves 60% of the heap
as storage memory and uses the rest for execution. Then,
it dynamically adjusts the boundary between execution and
storage memory according to the usage of each space. To-
day, Spark users commonly use both memory and disk for
caching. When an RDD partition does not fit in storage mem-
ory, Spark serializes (e.g., using Kryo [7]) and moves another
RDD partition to a storage device, using an LRU policy.

2.1 GC Overhead of Cached RDDs

Two factors increase GC overhead in an executor JVM. First,
the combined volume of intermediate results is large, often
several times larger than the input dataset [51], incurring high
cost during each GC cycle to scan the heap. We measure
that the combined volume of cached RDDs in the application
we use is 20× higher than the input dataset. Second, cached
intermediate results (objects) exhibit long lifetimes [18,47,53]
resulting in low return and frequent GC cycles as each GC
cycle cannot free much space.

To illustrate the potential for eliminating GC overhead, Fig-
ure 2 shows the RDD access patterns for PageRank (PR) and
Connected Components (CC). Each RDD has 256 partitions.
The horizontal axis shows time (seconds), and the vertical axis
shows the IDs of accessed RDD partitions (from 1 to maxi-
mum partition ID for each RDD). For each ID, the first dot
marks the time when that partition is cached. Each subsequent
dot represents access to this partition by the application.

We note that once Spark needs an RDD for computation,
it tends to access all partitions of an RDD sequentially. For
this reason, in Figure 2 RDD accesses form “lines.” There
also exist large intervals between accesses to RDD partitions.
For example, in PR and CC, Spark accesses the first partition
of RDD3, on its creation around T = 0 s but then again only
after at least 1500 s (PR) and 2500 s (CC), respectively. We ob-
serve similar temporal gaps between accesses to partitions of
RDD14 (PR) and RDD25 (CC). For certain RDDs, each par-
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Figure 2: Analysis of cached RDD accesses in PageRank (PR)
and Connected Components (CC).

tition is potentially accessed multiple times. For instance, for
RDD25, each partition is accessed twice around T = 3000 s.
However, there is still a significant period of inactivity (about
1000 s) until the next set of accesses around T = 4000 s. Oc-
casionally, successive accesses to the same partition exhibit
temporal locality because two jobs take turns to cache and
materialize partitions. For example, at T = 1100 s, Job0 cre-
ates and caches the last partition of RDD3, and then Job1
materializes this partition at T = 1200 s. Overall, the time
interval between accesses to each partition varies between
100-1500 s in both applications. This behavior motivates plac-
ing cached RDDs (unlike temporary, short-lived RDDs) on
storage devices (off-heap) that offer high capacity.

Furthermore, all data objects in each partition have similar
lifetime. When applications unpersist an RDD, Spark drops
all RDD partitions from its cache. At this point, in most cases,
no references exist to the corresponding JVM objects. This
observation reveals an opportunity to reclaim cached objects
en masse by organizing the compute cache in groups of data
objects with similar lifetimes.
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3 Design and Implementation

The main concept behind TeraHeap is to provide a separate
custom-managed heap for storage memory and use the pri-
mary JVM heap as execution memory in Spark. Figure 1(b)
shows the high-level design of TeraHeap, including the pri-
mary heap (H1) and the custom-managed heap (H2). Similar
to the regular JVM heap, H1 resides in DRAM and is di-
vided into two generations: young and old. Unlike H1, H2 is
memory-mapped over a device to allow direct access via Java
references and offer large capacity as the amount of cached
data grows. TeraHeap requires no changes to the program-
ming model and is fully transparent to Spark applications.
It is implemented entirely in the JVM and exploits persist()
hints from the Spark runtime to mark candidate objects and
move them to H2.

Figure 3 shows the flow of Spark caching operations in
TeraHeap. 1 The application invokes persist() explicitly. 2
The Spark block manager places the selected RDDs in the
compute cache, a hash-map that contains all cached RDDs.
The Spark block manager caches each partition independently,
maintaining per-partition entries in the hash-map. 3 Tera-
Heap offers a Java Native Interface (JNI) [31] call to the
application layer that is called inside Spark’s persist() oper-
ation. With TeraHeap, persist() only calls this JNI call and
does not perform any other operations in Spark, essentially
replacing the Spark block manager. Spark initially allocates
all RDD objects in H1. 4 In the JNI call, TeraHeap marks
the per-partition root RDD object. 5 Then, TeraHeap marks
and moves objects to H2, based on a migration policy.

3.1 Eliminating S/D with Memory-mapped
I/O

Separating H2 from H1 allows TeraHeap to handle the two
heaps with different mechanisms. H1 remains a limited-size,
garbage-collected heap. We place H1 in DRAM via anony-

mous memory mappings in Linux, as is the case with the
regular JVM heap. Accesses to H1 (and GC) are not affected
by the size or the technology of the H2 backing device.

Instead, H2 can grow significantly using fast, high-capacity
storage devices. Fast NVMe SSD and NVM devices, as op-
posed to HDDs, are amenable to memory-mapped I/O (mmio),
due to their high throughput and low latency for small request
sizes (4KB) regardless of the access pattern [39]. For this
reason, we design H2 as a mmap’d [8] heap to eliminate
S/D and to allow using regular pointers to and from cached
objects, without need of specialized lookup mechanism in ex-
isting JVM code. Thereby, H2 objects remain usable from any
program without the need of Java application modifications.

TeraHeap is agnostic to storage device technology and can
use (1) Fast NAND-Flash-based storage devices (e.g., NVMe
SSDs) via the block-based mmio path of the OS, (2) Non-
volatile memory (NVM) via a persistent memory (PMEM)
abstraction, or even (3) DRAM, if available in large sizes,
via anonymous memory mappings. However, we believe that
using fast NVMe SSDs is the most realistic configuration as
datasets grow. They provide high density (capacity) and low
cost per bit compared to DRAM and NVM [57].

For this reason, we design TeraHeap to cope with relatively
slow accesses to NVMe devices, as opposed to only faster
accesses to NVM. Note that today, the JVM can already allo-
cate its single object heap over a storage device using mmio
without any application modifications. However, this does not
suffice, as the entire heap is subject to GC overhead. For this
reason, a mmap’d JVM heap results in worse performance
compared to a combination of GC and S/D, as shown in Sec-
tion 5. Instead, TeraHeap avoids GC traversals in H2, as we
discuss next.

3.2 Tracking Cross-heap References to Avoid
GC

To avoid GC traversals in H2, we need to identify all refer-
ences from H1 to H2 (forward references) and from H2 to H1
(backward references), shown as solid arrows in Figure 3.

Forward references are relatively straightforward and re-
quire mainly fencing the garbage collector from crossing from
H1 to H2. The garbage collector reclaims objects from the
young generation during minor GC and the old generation
during major GC. In both minor and major GC, the collector
performs a breadth-first traversal (BFT) to mark live objects.
The garbage collector checks to see if any of the references
cross H1 to H2. If they do, the garbage collector stops marking
such references to avoid scanning H2.

Tracking backward references is more complex. Both mi-
nor and major GC must be aware of backward references to
identify live objects in H1. Unfortunately, scanning H2 to
identify backward references incurs considerable overhead.
To avoid scanning H2 during minor and major GC, we intro-
duce three JVM extensions: (1) keeping track of modified
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objects in H2, (2) detecting backward references in modified
H2 objects, and (3) taking backward references into account
during H1 liveliness analysis.

We detect updates to H2 objects during application ex-
ecution. We use a new card table (Figure 4) to keep track
of H2 object writes. The original JVM uses a similar card
table for detecting references from the old to the new genera-
tion [26, 48]. The H2 card table is a byte-array with one byte
per fixed-size H2 segment similar to the JVM card table. We
refer to these segments as card segments. The H2 card seg-
ment size does not need to match the size of JVM segments
for the old generation. Segment size affects both metadata
size and GC overhead (both minor and major). In particular,
the overhead of scanning H2 cards during minor and major
GC can be significant for a large H2. Increasing the H2 card
segment size results in fewer cards and faster GC traversals.
Our evaluation indicates that a size between 8-16 KB for H2
card segments works well, compared to the 512-byte card
segments used by the JVM’s old generation.

At first, we initialize all H2 cards as clean. When an ap-
plication thread updates an H2 object, TeraHeap marks the
corresponding card as dirty. To examine if the object belongs
to H1 or H2, we use an additional range check in the post-
write barrier used by the JVM after each object update. This
range check selects the appropriate (H1 or H2) card table,
which we then mark with the existing post-write barrier code.
Updates may originate from either interpreted or just-in-time
compiled methods with the C1 or C2 JVM compilers. For this
reason, we extend the post-write barriers in each compilation
level to support the marking of H2 cards. We evaluate the
overhead of our modifications to post-write barriers using the
DaCapo benchmark suite [15] and find it to be small, within
3% on average across all benchmarks.

An additional issue with the card table is parallel accesses
from multiple threads. Minor GC is multithreaded, and all
GC threads need to access the H2 card table during minor GC.
To avoid contention between GC threads, similar to H1, we
divide H2 into slices (Figure 4). Each slice contains a fixed
number of fixed-size stripes (each stripe is by default 64K, so
it consists of 128 card segments) equal to the number of minor
GC threads. Within each slice, each GC thread processes the
stripe with the same id. Therefore, each GC thread operates
on the same stripe id in all slices of H2.

In the original JVM, dividing the work of scanning the

cards among multiple GC threads results in the boundary
cards (first and last card) of each stripe being accessed by two
neighboring threads. To avoid synchronization between these
two threads, the original JVM never marks boundary cards as
clean. This means that if boundary cards become dirty, they
will remain dirty throughout execution, and the corresponding
card segments will always be scanned for objects that contain
backward references. This is not as big of an issue for H1
for two reasons: (a) card segments are relatively small, by
default 512 bytes. (b) scanning card segments that are placed
in memory for backward pointers is relatively fast.

However, for H2, both of these factors introduce significant
issues: (1) Card segments are larger to reduce the size of
the card table, e.g., 8KB. Thus, if stripes remain at 64KB,
then they consist of a small number of large cards, e.g., eight
cards, with two of these being boundary cards. Therefore, a
quarter of the card segments will be left dirty to always be
scanned, creating high overhead. To reduce the number of
boundary cards, we use a larger stripe size. Our evaluation
indicates that a stripe size between 4-8 MB for H2 works
well, compared to the 64 KB stripe size used by the JVM’s
old generation. (2) In addition, H2 segments are located on the
storage device, which results in significantly higher overhead
to scan its objects for backward pointers. For this reason, it is
essential to ensure that only dirty segments are marked dirty.
During the scanning phase of major GC we identify which
objects moved to H2 have references to H1. Then, we mark
the corresponding cards of these objects in H2 as dirty.

Once a dirty card is encountered by a GC thread, to identify
if a modified object contains backward references, we iterate
over all object combined in its segment. This suffices, as a mi-
nor GC also happens just before a major GC cycle. Scanning
these objects may involve I/O if they are not placed in DR2
by mmio. If an object contains no backward references, we
clear the corresponding card, otherwise, we push its backward
references in a backward reference stack.

Finally, during marking phase of major GC, we prevent
reclamation of H1 objects referred from H2 objects (backward
references). We traverse the backward reference stack and
mark referenced H1 objects as live. After H1 compaction,
we use the backward reference stack to adjust all backward
references to point to the new object locations in H1.

3.3 Populating H2 During Major GC

All objects in TeraHeap are initially allocated in H1, simi-
lar to the original JVM. Unlike Spark that can cache only
RDDs [12], TeraHeap, being a transparent, JVM-level mech-
anism can move arbitrary JVM objects to H2. TeraHeap uses
a configurable policy to select and mark objects for migration
to H2. Then, the garbage collector moves all marked objects
to H2. TeraHeap uses a new field (8 bytes) in the JVM object
header (Figure 5) to mark candidate objects. Although it is
possible to avoid this additional field, it may require addi-
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Figure 5: Object layout in Java, including the additional Tera-
Heap word in the object header.

tional metadata in the JVM and may increase minor GC time
for book-keeping. For this reason, our current implementation
uses the additional header field.

TeraHeap moves marked objects from H1 to H2 during
the compaction phase of major GC. We extended standard
compaction, where the garbage collector relocates all live
objects, to relocate marked objects into H2. Relocation to
H2 creates forward and backward references. Forward refer-
ences are updated during pre-compaction similar to all other
references; backward references need to be tracked by Ter-
aHeap. To avoid scanning the fields of each object at this
point, we merely mark the corresponding TeraHeap card as
dirty. Therefore, the main overhead of TeraHeap for major
GC is the actual transfer of objects from H1 to H2. Although
H2 is memory-mapped and reads are always performed via
mmio, writes to H2 (moving objects) can happen with differ-
ent mechanisms. In our evaluation, we examine mmio and
explicit asynchronous I/O for H1 to H2 transfers.

TeraHeap policy code for populating H2 merely decides
which objects to mark. Although TeraHeap can place arbi-
trary objects in H2, ideally, H2 should contain objects that
are: (1) long-lived, so high-yield in terms of GC overhead,
(2) amenable to bulk free, so high-yield in terms of reclaimed
space, and (3) intermittently accessed, so yield in large inter-
vals without accesses them.

Eager, Non-Transient fields (ETR): In our work, we in-
troduce the ETR policy, which transfers similar objects to H2
as would happen in the S/D approach. During S/D, the serial-
izer traverses the object graph to identify all objects that need
to be serialized, in RDDs that have been persisted. Similarly,
ETR during the marking phase of major GC, identifies the
transitive closure of each cached data object. In Java a field
in a class can be marked with the transient modifier. When
the object is deserialized, transient fields are initialized to a
default/fixed value according to the serializer. Their value is
not required to be part of the serialized object. For this reason,
the serializer omits transient fields when serializing an object.

In the same way, our ETR policy during the marking phase
of major GC, skips transient objects that are part of the clo-
sure for each marked object. The transitive closure includes
arbitrary JVM objects from both the young and old genera-
tions of H1. In the end, ETR will move to H2 only objects of
RDD partitions which are immutable, leaving as backward
references all transient fields. Moving arbitrary objects to H2
might create new backward references because the application

. . .Start

H2

Region Group Array

VMRegion 0 VMRegion 1 . . . VMRegion n-1 VMRegion n

Used
Alloc.
Offset

Region
in group

Ptr to Region

Region Array

Start Used
Alloc.
Offset

Region
in group

Ptr to Region Ptr to Region Ptr to Region. . .

Figure 6: TeraHeap allocator overview.

updates some of these objects. Thus, ETR offers the flexibility
to populate H2 with immutable objects, minimizing backward
references to H1.

Note that TeraHeap handles any remaining backward and
forward references between H2 and H1 for all policies. There-
fore, marking objects is only a matter of performance (policy)
and not a correctness mechanism. This approach allows for
significant flexibility. Also, if it eventually becomes possible
to identify object characteristics at runtime, the persist op-
eration may not be necessary, rendering TeraHeap entirely
transparent to higher layers that will be able to use a large
JVM heap without providing any hints.

3.4 Freeing Space in H2
We design TeraHeap to reclaim cached objects in a bulk
manner. To achieve this, we organize H2 in virtual memory as
a region-based heap. Figure 6 shows the arrangement of H2 in
virtual memory. Similar to prior work [22,36], TeraHeap frees
objects in the same region in one batch. This region-based
management precludes traversing and reclaiming individual
objects, limiting GC overhead.

TeraHeap places objects of each RDD partition in the same
H2 region until it exhausts the region space (Figure 3). We ob-
serve typical RDD partition sizes of several tens of megabytes
(MB) and as big as 64 MB. Based on that, we size regions to
be few GB. We ensure that each region contains objects of
the same RDD partition as follows. We patch the Spark block
manager to perform a JNI call (as part of the persist operation)
which sets the partition id in the TeraHeap header word of
the corresponding JVM object. During the calculation of the
transitive closure we mark each object with the same partition
id. Finally, we move all objects related to a partition id to the
same region(s) in H2.

To reclaim a region, TeraHeap ensures that all objects in
the region are not referenced from other objects. To identify
such regions, TeraHeap tracks two types of region references.

References from H1 to H2: For tracking H1 references,
TeraHeap uses a USED bit in the per-region metadata in
DRAM. The garbage collector clears these bits at the begin-
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(GB) NVMe
Server

NVM
Server

Dataset
on

Foot-
print D

Spark
-SD

Spark
-MO TC Other

DRAM DRAM DISK H=
DR1

H=
NVM

H1=
DR1 DR2

PR 80 192 32 641 64 1024 64 12+4
CC 84 192 32 679 68 1024 68 12+4
SSSP 58 192 32 420 42 650 42 12+4
SVD 40 192 2 240 24 500 24 12+4
TR 80 192 2 37 64 64 64 12+4

Table 1: Spark-SD, Spark-MO and TeraHeap configurations
for each workload for setups with NVMe SSD and NVM.
Other refers to the DRAM reserved for the OS and the Spark
driver.

ning of each marking phase (major GC in H1). Upon encoun-
tering a reference to an object in H2, the collector sets the
corresponding region bit. Thus, the USED bit for each region
captures all H1 references to H2 regions.

Internal references between regions in H2: We also need
to avoid internal H2 references across regions. To achieve this,
TeraHeap detects internal references and logically merges the
source and destination regions in a single group. Figure 6
shows how TeraHeap tracks groups of regions. To track sev-
eral groups requires an array with region-group metadata.
Array entries keep a reference to a list of region groups. Dur-
ing the marking phase of major GC, we detect if objects with
the TeraHeap mark word enabled reference existing regions
in H2. By moving objects to H2 in the compaction phase,
the TeraHeap allocator logically unifies regions with cross-
references by inserting a reference to the region array. If a
group already exists, then we append the new region to the
group. Note that region-merge incurs constant overhead, as it
only involves a single pointer in the region.

At the end of major GC, any H2 region not marked as live
is not reachable from any object in H1 nor from any GC root
(e.g thread local variables, JNI local and global variables).
Therefore, their regions can be freed, which involves con-
stant overhead: We set the allocation offset in the respective
region(s) to zero and clean the card tables that refer to the
objects of this region.

4 Experimental Methodology

Experimental platform: To evaluate the performance of
TeraHeap using block-based NVMe SSDs, we use a dual-
socket server with Intel Xeon E5-2630 v3 processors clocked
at 2.4 GHz with 16 cores (32 hyper-threads), with 256 GB of
DDR4 DRAM. The system runs CentOS v7.3 Linux OS using
4.14.182 kernel. The server has a 2 TB Samsung PM983 PCI
Express NVMe SSD. We limit the available DRAM capacity
in our experiments using a large, statically allocated ramdisk.
Table 1 shows DRAM size in each workload.

Also, we investigate the benefits of TeraHeap for setups
that can use NVM for storing cached objects. We conduct our

NVM evaluation on a dual-socket server with two Intel Xeon
Platinum 8260M CPUs at 2.4GHz, with 24 cores and (96
hyper-threads), 192GB of DDR4 DRAM. The system runs
CentOS v7.8 Linux OS using 3.10 kernel. We use Intel Optane
DC Persistent Memory [5] with a total capacity of 3TB, of
which 1TB is in Memory mode, and 2TB are in AppDirect
mode. The system mounts NVM as a DAX file system (ext4)
to establish direct mappings to the device.

We use OpenJDK with the HotSpot JVM built from
source (v8u250-b70) with the Parallel Scavenge collector
(PSGC) [28]. We use 16 garbage collector threads to reclaim
the heap. We use Spark v2.3 with the Kryo serializer [7], a
highly optimized S/D library for Java that Spark recommends.
We follow commonly used guidelines [10] and use 8 cores for
our Spark executor. To reduce variability, we disable swap-
ping, and we set the CPU scaling governor to performance.

Baselines: We configure TeraHeap to allocate H1 on
DRAM and H2 over our NVMe SSD via mmio. Using NVM,
we configure TeraHeap to allocate H1 on DRAM and H2
over NVM via mmio using direct access to NVM (AppDirect
mode). We compare these configurations with two baseline
configurations: (1) Spark-SD uses the default storage level
of Spark (Memory and Disk) which places executor memory
(heap) in DRAM, using an on-heap cache (50% of the total
heap size). The rest of the RDDs are serialized over NVMe
SSD. In the case of NVM, Spark-SD serializes RDDs over
NVM using AppDirect mode, handling NVM as a storage
device. In both cases, we use the entire storage device as
the off-heap RDD cache. (2) Spark-MO uses a single heap
allocated over NVM without code changes. We set the CPU
to memory mode, so all available DRAM (192GB) acts as a
cache for NVM (1TB). We place all cached data on-heap by
using the Memory Only storage level of Spark.

Workloads: We use five widely used and memory-intensive
graph processing workloads from the Spark-Bench suite [30]:
PageRank (PR), Connected Components (CC), Single Source
Shortest Path (SSSP), Singular Value Decomposition Plus
Plus (SVD), and Triangle Counts (TR). We synthesize
datasets using the SparkBench data generators. Table 1 shows
the configurations and the dataset sizes we use for Spark-SD,
Spark-MO, and TeraHeap to run each workload over NVMe
SSD and NVM, respectively. We repeat each experiment 5
times and report the average of the end-to-end execution time.

Execution time breakdowns and profiler-based estima-
tion of S/D overhead: We break execution time into four
main components: other time, S/D + I/O time, minor GC
time, and major GC time. Other time includes application
(mutator) time. In Spark-SD, S/D time includes S/D time both
for shuffle and caching. In TeraHeap and Spark-MO (in the
NVM setup), all S/D time is due to the shuffle operation.
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The JVM reports the time spent in major and minor GC. We
estimate the overhead of S/D as follows. The Spark executor
consists of application (mutator) and GC threads. Application
and GC threads are not overlapped in time and JVM reports
the time spent in each group of threads. This allows us to plot
execution time breakdowns for each application, including
minor, major, and mutator times.

We note that all S/D occurs in application threads. We use a
sampling profiler [4] to collect execution samples from the ap-
plication threads. The samples include the stack trace, similar
to the flame graph [23] approach. Then we sum the samples
for all the paths that originate from the top-level functions
writeObject() and readObject() functions of the KryoSerial-
izationStream and KryoDeserializationStream classes. These
samples include both S/D for the compute cache and the
shuffle network path of Spark. We then use the ratio of S/D
samples to the total application thread samples as an esti-
mate of the time spent in S/D, and we plot this separately in
our execution time breakdowns. We run the profiler with a
10ms sampling interval, and we verify that this does not create
significant overhead (less than 2% of total execution time).

Cached data footprint (D): We introduce a new metric
D, the footprint of all cached Spark RDDs. D depends on
application behavior. Our measurements show that D can be
up to 20× larger than the input dataset and can easily increase
the heap required by the executor. D is also affected by the fact
that deserialized Java objects on the managed heap occupy
2-3× their size in serialized form [51]. So, for large datasets,
only a small portion of D can be cached in memory [2, 19, 24,
24]. In our work, we experimentally determine the D for each
application and Table 1 summarizes our results.

Heap size (H): To capture the effect of large datasets and
limited DRAM capacity [20], we use a heap size between
2.5%, 5%, 10%, and 20% of D for our workloads running
with Spark-SD. Table 1 lists the heap sizes corresponding to
10% of D for our experiments. TR uses a heap size of 173%
of D (larger than 10% of D) because it generates massive
temporary records for the join operation in each iteration. TR
does not execute successfully with smaller heaps.

We devote a fixed (12 GB) amount of DRAM to the OS,
used as a cache for I/O and other OS-related functionality. We
also devote a fixed amount of memory (4GB) for the Spark
executor process, besides the JVM heap. In TeraHeap, we use
the same amount of DRAM as in the native configurations of
each workload, divided between DR1 used to back H1 (10%
of the data footprint) and DR2 (12 GB + 4 GB), which is used
for the OS, including the mmap’d H2 and the Spark executor.

5 Evaluation

5.1 Performance Evaluation with NVMe

We first explore the tradeoff in DRAM capacity and overall
performance with Spark-SD and TeraHeap for five analytics
workloads in Figure 7, using NVMe-SSD setup. Specifically,
we show total execution time and its breakdown into different
components with varying heap sizes. We vary the heap sizes
from 2.5% to 20% of D, except TR that requires a larger heap
size to execute successfully (118%-173% of D). The total
DRAM capacity is equal to the heap size plus the memory
reserved for the OS and Spark driver (16 GB). We show results
for TeraHeap with H1 set as 2.5% and 10% of D (last two
bars in Figure 7). The missing bars in the figure indicate that
such configurations suffer from out-of-memory errors.

We first observe that TeraHeap does not suffer from out-
of-memory errors for similar heap sizes, unlike the base-
line configurations. Thus, TeraHeap makes more efficient
use of the managed heap. Next, across all applications, the
best-performing TeraHeap configurations consume 8× less
DRAM capacity than Spark-SD. For tight heaps, reducing
the GC overhead is paramount. TeraHeap transfers cached
objects to H2, freeing up space in H1 for use by the executors
in Spark. As a result, TeraHeap reduces the GC overhead by
up to 64% (PR) because we avoid to traverse up to 59 million
forward references in H2. Specifically, with 5%-10% of D, the
GC overhead in the baseline is up to 50%. This overhead is
mainly because cached objects on the managed heap occupy
almost half of the total heap, triggering GC more frequently.
For example, by increasing the heap size from 5% to 20%
in Spark-SD (PR) the total number of major GC decreases
by 90%. GC is a space-time tradeoff, and as we increase D
to 20%, the GC overhead raises on average to 25% of the
execution time in the baseline. TeraHeap continues to deliver
improved performance for a large D. Also, TeraHeap reduces
significantly S/D overhead by up to 80% across all heap sizes
as it eliminates the S/D cost of the cached RDDs objects.

We next discuss the overall performance of TeraHeap com-
pared to Spark-SD when the heap size is 10% of D (Figure 7).
Each run is in the order of 0.5-2 hours. Overall, TeraHeap
improves performance compared to Spark-SD by 36%, 27%,
16%, 72%, and 71% in PR, CC, SSSP, SVD, and TR, respec-
tively. We observe that the S/D overhead in TR for TeraHeap
is similar to Spark-SD because cached data fits in the on-heap
cache. Although TeraHeap reduces the S/D and GC overhead,
it also reduces the other time by up to 74% (on average 29%).
This reduction is because TeraHeap incurs fewer (CPU) cache
misses due to GC-triggered object movement. More specifi-
cally, the collector scans and copies each live object to a new
location inside the heap. The copying cost is proportional to
object size and changes the cache behavior [25]. As shown in
Table 2, TeraHeap achieve 5.54× fewer cache misses, result-
ing in a dramatic (up to 74% in SVD) reduction in other time
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Figure 7: Overall performance of TeraHeap (TC) compared to Spark-SD using the NVMe SSD setup with heap sizes equal to
2.5%, 5%, 10%, 20% of D. (DRAM capacity varies accordingly.) Note that TR requires heap sizes larger than D.

Performance Counters PR CC SSSP SVD TR
Cache References 1.24 1.13 1.10 6.29 1.52
Cache Misses 1.11 1.06 1.04 5.54 1.79

Table 2: Ratio of CPU Cache References and Cache Misses
of Spark-SD over TeraHeap for each workload with 10% of
D heap size, using NVMe SSD configuration.
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Figure 8: GC time and old generation occupancy in PR for (a)
Spark-SD and (b) TeraHeap. Heap size is equal to 10% of D.

Next, we discuss GC time and the percentage of heap con-
sumed by the old generation for PR with Spark-SD and Tera-
Heap (heap size is equal to 10% of D) in Figure 8 (a) and (b).
We observe similar behavior in the other workloads but omit
the full results due to space constraints. We note that Spark-
SD suffers from frequent major GC cycles. There are 171
cycles of major GC, with each cycle requiring on average 3.7
secs. Each cycle in Spark-SD can only reclaim 10% of the old
generation objects (0-3000 seconds), as the remaining objects
are live cached objects. In contrast, TeraHeap performs only
13 major GC cycles. During each cycle, TeraHeap moves to
H2 on average 28,523 objects (out of 313,751 total cached
objects) and up to 60% of the old generation objects, reducing
stress on the GC. Each cycle in TeraHeap takes on average
16 seconds, and a large portion of it is due to I/O during the

compaction phase. Finally, transferring objects directly from
the young generation to TeraHeap reduces total minor GC
time by 38% compared to Spark-SD. This reduction of the
minor GC time (shown in the figure) is because TeraHeap
requires scanning fewer cards that track old-to-young refer-
ences because fewer objects are in the old generation than
Spark-SD.

5.2 Performance Evaluation with NVM
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Figure 9: Overall performance of TeraHeap (TC) compared
to (a) Spark-SD and (b) Spark-MO baselines over NVM.

Now, we examine the benefits of TeraHeap for setups with
cached objects backed by NVM. Figure 9 (a) and (b) shows
the performance breakdown for Spark-SD, Spark-MO, and
TeraHeap in our NVM-based setup with 10% of D heap size.

Figure 9 (a) shows that TeraHeap improves performance
by 40%, 38%, 18%, 81%, and 60% compared to Spark-SD
in PR, CC, SSSP, SVD, and TR, respectively. We note that
block-addressable storage devices suffer from expensive S/D
operations that result in read/write I/O system calls for writ-
ing data to persistent storage. However, TeraHeap exploits
the byte-addressability of NVM and loads and stores cached
objects from memory, resulting in fine-grain access to the
cached data objects. For example, Spark GraphX keeps an
index structure in each partition to send and receive data
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across vertices. TeraHeap uses mmio to directly access this
data structure inside the partition. In comparison, the S/D
approach needs to deserialize the partition’s objects and then
access the index structure. Overall, our results show that Ter-
aHeap significantly reduces S/D and GC time compared to
Spark-SD by up to 89% and 70%, respectively. Also, in SVD
workload TeraHeap reduces the other time by 80% compared
to Spark-SD. Reducing the movements of the object produced
during GC, TeraHeap highly decreases the CPU cache misses
by 5.6×.

Figure 9 (b) shows that TeraHeap improves performance
by 46%, 46%, 36%, 38%, 65% compared to Spark-MO in
PR, CC, SSSP, SVD, and TR, respectively. Mainly the perfor-
mance improvement of TeraHeap results from the reduction
of the minor GC time and major GC time by up to 82% (on
average 64%) and 89% (on average 80%) compared to Spark-
MO, respectively. Running the garbage collector on top of
NVM (using DRAM as a cache) becomes a severe bottleneck
mainly due to the high latency of NVM [54] and the agnos-
tic placements of objects. The garbage collector performs
traversal to identify live objects. Traversing the fields (refer-
ences) inside a live object, the referred objects could reside
anywhere in the heap. Some of these objects may not reside
in DRAM cache so the access latency increases because the
garbage collector has to retrieve them from NVM, increasing
the GC time. For this reason, Spark-MO increases the number
of read and write requests over NVM compared to TeraHeap
by 5.3× and 11.8× on average, respectively. Thus, the ability
to maintain distinct heaps for the execution and caching parts
of the heap, solely use the NVM for caching, and prevent GC
in the cache, are all vital to performance.

5.3 GC Analysis with TeraHeap

TeraHeap performs extra work during minor and major GC
of the H1 heap to avoid GC over the H2 heap. The extra work
involves (1) scanning the H2 card table during minor GC and
(2) transferring objects from H1 to H2 during major GC.

First, we evaluate the overhead of scanning the H2 card
table during minor GC. Figure 10 (a) shows minor GC time
using 512 B, 1 KB, 4 KB, 8 KB, and 16 KB card segments,
normalized to 512 B card segments. We observe that increas-
ing the card segment from 512 B to 16 KB reduces minor GC
time up to 40% (on average by 14.0%). Larger card segments
result in a smaller card table and require less time to scan
the respective cards. However, H2 objects mostly reside on
the storage device. Therefore, increasing the card segment
size, increases the cost of scanning each card segment, if the
respective card is marked as dirty. We observe that updates to
H2 objects are infrequent compared to H1 updates, as RDDs
are immutable. For instance, SVD has only three references
from H2 to H1, which contains 3,6 billion objects. Thus, in
H2, it is preferable to use larger rather than smaller card seg-
ments to reduce the number of cards at the cost of larger card

segments.

Scanning the H2 card table is also affected by the num-
ber of dirty boundary cards. To avoid synchronization for
objects that span card segments (across stripes), the garbage
collector does not clean boundary cards between stripes after
scanning the respective objects for back-pointers. As a result,
if a boundary card is marked once dirty, then the garbage
collector traverses the objects in the respective card segment
in every subsequent minor GC. However, these always-dirty-
boundary-cards create significant overhead in TeraHeap be-
cause scanning occurs over the storage device. Therefore, in
H2, we use a larger stripe size, which results in a smaller per-
centage of boundary cards. Using a stripe size of 64 KB with
512KB card segments (Figure 10 (a)) increases the number
of boundary cards compared to using 8MB stripe size.

Figure 10 (b) depicts minor GC time for 2 MB, 4 MB, and
8 MB stripes sizes using 4 KB card segment, normalized to
2 MB. We note that in CC, SSSP, and SVD, minor GC time
reduces on average by 23% and up to 44%. In PR and TR, mi-
nor GC time is similar for all the three stripe sizes. Therefore,
because H2 is larger than H1, it is preferable to use a large
stripe size to minimize the number of boundary cards.

Second, we investigate the overheads introduced by Tera-
Heap during major GC for H1 by copying objects from the
old generation to H2, which involves device I/O. We find that
the mark, precompact, and adjust phases of major GC take
up 2% of the total major GC time. The compact phase takes
the remaining 98% of major GC time due to the required I/O.
To reduce the overhead of I/O-based object migration, we
explore different approaches for I/O writes during the com-
paction phase: (1) memory copying over mmio (memcpy) and
(2) asynchronous system calls (AsyncIO). TeraHeap waits
for all asynchronous I/O operations to complete before the
compaction phase terminates.

Figure 10 (c) shows major GC time using different I/O
mechanisms for moving objects to H2, normalized to the
performance of memcpy. AsyncIO reduces major GC time
by 15%, 24%, and 27% in PR, CC, and SSSP workloads be-
cause we use system calls for large I/Os without polluting
the DRAM cache. We observe that AsyncIO in PR delivers
throughput up to 550MB/s compared to mmio that delivers
up to 400MB/s. The compaction phase in the PSGC is single-
threaded by design. For mmio, this results in a single outstand-
ing I/O, under-utilizing the storage device. AsyncIO saturates
the storage device with multiple outstanding I/Os (64 in our
experiments). However, mmio reduces major GC time by 17×
in SVD and 10% in TR because the system time is 3× lower
than AsyncIO. To reduce the large number of system calls for
small-sized objects, TC can use a 2 MB buffer to collect all
small objects and then perform one system call to write 2 MB
objects.
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Figure 10: Minor GC time with TeraHeap for (a) various card segments using 64KB stripe size and (b) for 2MB, 4MB, and 8MB
stripe sizes using 4KB card segment, and (c) major GC time with TeraHeap for different I/O mechanisms.
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Figure 11: Sensitivity analysis of TeraHeap with respect to
(a) the size of H1 (DR1) with constant DR2, and (b) the size
of H1 (accordingly to H2) with constant amount of DRAM
capacity.

5.4 Sensitivity Analysis

Although TeraHeap performs well with smaller amounts of
DRAM for H1 compared to the native JVM, it is interesting
to examine how TeraHeap might benefit from increasing the
available DRAM capacity. Figure 11 (a) shows normalized
execution time in TeraHeap as the size of H1 grows from
2.5%, 5%, and 10% of footprint D for PR and CC, and 5%,
10% and 20% of footprint D for SSSP. The size of DR2 is
constant across all workloads. We report only PR, CC, and
SSSP due to space constraints, and we normalize the results
in each group to the bar for 2.5% of D (5% of D for SSSP). As
H1 (DR1) size increases, minor and major GC time decreases
up to 68% (on average by 62%) and up to 60% (on average
41%), respectively. Therefore, the performance of TeraHeap
is more sensitive to the size of H1.

Next, we examine the sensitivity of TeraHeap to divid-
ing a fixed amount of DRAM between DR1 and DR2. Fig-
ure 11 (b) shows the performance of TeraHeap when H1
varies from 2.5%, 5% and 10% of D in PR, CC, and SSSP.
Since the DRAM capacity remains constant in all configura-

tions (80 GB in PR, 84 GB in CC, and 58 GB in SSSP), the
size of DR2 decreases accordingly. The missing bar in SSSP
indicates that the configuration with 2.5% of D cannot run
due to an out-of-heap error. We normalize the results in each
group to the bar 2.5% of D (5% of D in SSSP). By increasing
H1 from 2.5%-10% in PR and CC, and from 5%-10% of D
in SSSP, both minor and major GC time decrease by up to
62% and 47% (on average by 41% and 29%), respectively.
Additionally, as we increase the H1 from 2.5%-10% of D, the
garbage collector performs 2× less major GC cycles, moving
by 50% more objects to H2 in each GC cycle. Therefore, it is
preferable to devote more DRAM capacity to H1 rather than
devoting it to the DR2 buffer cache.

5.5 Terabyte Cached Data Footprints

So far, for practical purposes, we have analyzed TeraHeap for
datasets that create a few hundred GBs of cached data (D). We
now perform a limited evaluation with TB-level cached data
footprints in our NVMe SSD setup. We use datasets that result
in cached data footprints of 1.4 TB, 1.12 TB, 1.32 TB, and
1.33 TB in PR, CC, SSSP, and SVD, respectively. We maintain
the ratio of about 10% of D and use an H1 of 140 GB, 112 GB,
132 GB, 133 GB for PR, CC, SSSP, and SVD, respectively.
We allocate 16 GB of DRAM for use by the OS and the Spark
driver. Each run is in the order of 2-5 hours. We observe
improvements with TeraHeap in line with our results with
smaller datasets. TeraHeap improves overall performance
compared to Spark-SD by 39%, 33%, 23%, and 48% in PR,
CC, SSSP, and SVD, respectively. These improvements are
slightly better than our results with small datasets because GC
and S/D overheads tend to increase as data footprint grows.

6 Related Work

Mitigation of S/D overhead for big data analytics: Neu-
trino [51] proposes fine-grain adaptive caching for Spark that
serializes RDDs based on available executor memory. LLC
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and LRC [21, 58] evict RDD partitions that minimize RDD
recomputation time. MemTune [52] dynamically tunes the
partitioning of memory between computation and caching.
MemTune also offers task-level data prefetching to overlap
computation with S/D and I/O operations. Zhang et al. [62]
modify cache management to reduce RDD movement be-
tween DRAM and disk. These prior works attempt to miti-
gate the S/D overhead without addressing GC overhead. In
comparison, TeraHeap uses memory-mapped RDD caching
to eliminate S/D and avoids expensive GC traversals over
cached data.

Recently, several libraries [3, 7, 9] improve the efficiency
of S/D, but they still result in high S/D overhead for big data
frameworks [34]. Apache Arrow [1] and Tungsten [11] use
off-heap computation but require prior knowledge of the ob-
ject schema (e.g., Spark SQL) and do not extend to applica-
tions that use complex data structures (e.g., graph processing).
Skyway [35] reduces the S/D cost by directly transferring
objects through the network in distributed managed heaps,
but it does not cope with DRAM limitations and GC over-
heads. Recent work [27, 40] examines techniques to reduce
S/D overheads in analytics frameworks using custom hard-
ware and modifications to the programming model. Other
works [41,46,49] focus on reducing S/D cost by reducing the
number of object copies across buffers. TeraHeap requires
no changes to the application code and works on commod-
ity hardware. Also, TeraHeap uses load/store instructions to
access cached objects (mmio) without additional copies and
transformations.

Scaling heaps and minimizing GC overhead: Recent
work targets emerging non-volatile memory (NVM) for
storing managed heaps [13, 14, 43, 47, 50, 56]. They focus
on (1) scaling the managed heap beyond DRAM capac-
ity [13,14,47,56] and (2) exploiting GC to manage a persistent
heap [43, 50]. Panthera [47] requires offline profiling to move
infrequently accessed RDDs in NVM [47]. Other works focus
on improving NVM write endurance [13, 14]. The authors
in [56] report high GC overhead with NVM-backed volatile
heaps and optimize the G1 GC for Intel Optane memory. Ex-
ploiting GC for managing persistent heaps [43,50] is relevant
but orthogonal to our work. Existing garbage collectors do
not handle large heaps over NVM, and unlike TeraHeap, they
increase GC overhead. Unlike most prior works, TeraHeap is
generalizable to different types of garbage collectors.

Managed big data frameworks have revived the interest
in reducing GC overhead [22, 37]. Yak [36] proposes a new
garbage collector that uses program semantics to divide the
(DRAM) managed heap into control and data heaps. Yak or-
ganizes the data heap into regions of objects with similar
lifetimes. On deallocating a region, Yak migrates objects with
escape references to newly merged regions. The data heap in
Yak is not compatible for placement on a storage device as
the cost of object migrations due to region merging leads to a

prohibitive overhead. Prior efforts propose techniques to seg-
regate long-lived objects and manage them separately in an
unmodified heap. NG2C [18] uses runtime profiling to iden-
tify long-lived objects. They incur online profiling overhead.
Others use offline allocation-site profiling to manage long-
lived objects [16, 17]. Lifetime profiling is complementary to
TeraHeap, and it can further improve its efficiency. Unlike
prior approaches, TeraHeap is the first JVM proposal that
supports a dual heap over memory and storage and reduces
the GC and S/D overhead for analytics caches.

7 Conclusion

Managed data analytics frameworks require processing large
datasets with iterative computations that demand large com-
pute caches. Caching intermediate results incur high GC and
S/D overheads. Our work proposes TeraHeap, a design that
uses two heaps, H1 and H2, in the JVM, eliminating GC and
S/D cost for H2 objects. H2 is memory-mapped to fast stor-
age devices with high capacity and allows direct access to
materialized objects. TeraHeap improves Spark performance
up to 72% (on average 45%) and 81% (on average 47%)
for NVMe and NVM devices, respectively. Also, TeraCache
utilizes 8× less DRAM capacity to provide comparable or
higher performance than native Spark.

We believe that our approach of managing large memory
in the JVM as customized, separate heaps, with policies that
match the properties of certain object groups is particularly
promising for incorporating huge address spaces in Java with-
out incurring excessive GC overhead. We believe that future
work will be successful in identifying other types of objects,
such as persistent or network-related that will be amenable to
placement in customized heaps.
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