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ABSTRACT
The ever-growing demand for more memory capacity from applica-
tions has always been a challenging factor in computer architecture.
The advent of the Non Unified Memory Access (NUMA) architec-
ture has achieved to work around the physical constraints of a
single processor by providing more system memory using pools
of processors, each with their own memory elements, but with
variable access times. However, the efficient exploitation of such
computing systems is a non-trivial task for software engineers. We
have observed that the performance of more than half of the ap-
plications picked from two distinct benchmark suites is negatively
affected when running on a NUMAmachine, in the absence of man-
ual tuning. This finding motivated us to develop a new profiling
tool, so called PerfUtil, to study, characterize and better understand
why those benchmarks have sub-optimal performance on NUMA
machines. PerfUtil’s effectiveness is based on its ability to track
numerous events throughout the system at the managed runtime
system level, that, ultimately, assists in demystifying NUMA pecu-
liarities and accurately characterize managed applications profiles.
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• Software and its engineering → Software design engineer-
ing.
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1 INTRODUCTION
Until recently, multi-core processors have been aggregating pro-
cessing cores with uniform access latency to the single memory
unit of the system. However, as their number increased enormously,
the available bandwidth per core has decreased and, thus, the scal-
ability of such designs has come to an abrupt end. To work around
the scarce memory capacity and bandwidth limitation, modern
multiprocessor designs are based on a non-uniform memory access
(NUMA) design. In a NUMA system, cores are clustered into nodes.
Each node has a memory controller and is interconnected with
other nodes using high speed interconnection links (e.g. Intel’s
QuickPath (QPI) [16], AMD’s HyperTransport [2], etc.). As such,
a core can access any memory attached to the multiprocessor, but
with non-uniform access latency, since the latency depends on the
memory location of the data being accessed.

The efficient exploitation of a NUMA machine is a non-trivial
task for software engineers. Typically, a NUMA efficient applica-
tion needs to limit the amount of remote memory accesses in order
to avoid penalizing its performance. For example, an application
hosted by a Managed Runtime Environment (MRE), which is un-
aware of the underlying NUMA topology, is very likely to lead to
scattered objects across the different nodes of the NUMA machine
and, thus, to excessive amount of remote memory accesses. To
motivate towards our objective, Figure 1 briefly presents the perfor-
mance increase (i.e., blue columns) and decrease (i.e., red columns)
of a set of benchmarks, picked from the Dacapo and Renaissance
benchmarks suites, by comparing overall performance when utiliz-
ing one (i.e., non-NUMA) and two NUMA nodes (i.e., NUMA) of
the same machine. A quick glance over the plotted performance
values indicates that NUMA mostly results in slowdowns on man-
aged applications. In particular, we notice that 16 out of the 26
benchmarks performed worse on the NUMAmachine. Thus,
the observation that more than half (about 60%) of the selected
benchmarks when run on a NUMA machine performed worse, mo-
tivated us to study, characterize, and better understand NUMA
architecture peculiarities.

Recent studies on managed runtimes running on NUMA ma-
chines are focused either on characterizing garbage collector’s scal-
ability bottlenecks or on introducing various NUMA-aware thread
scheduling and memory management policies in the managed run-
time system [5, 12–14, 25, 26]. Two other studies [17, 22] have char-
acterized managed applications based on the allocation rate, object
layout and garbage collection metrics, as well as they provided
a methodology to evaluate concurrency, object synchronization,
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Dacapo
Renaissance

Figure 1: NUMA effect on Dacapo & Renaissance benchmarks. Two NUMA node execution time normalized to single, non-
NUMA node. Columns in red color denote slowdown.

and shared memory accesses. Additionally, there are some older
studies that utilize HW counters like we do in this work [18, 24, 29].
However, none of those studies provides a characterization on such
a wide range of managed applications (from both Dacapo and Re-
naissance benchmark suites) on top of NUMA machines. Finally,
several profiling infrastructures [6, 21, 28, 30] are available for man-
aged runtimes. However, they are either task-specific (ROLP and
FJProfiler) or not built for NUMA systems (JProfiler, AntTracks), as
well as none of them supports hardware counters utilization.

This work augments MaxineVM [20], a state-of-the-art research
managed runtime system, with PerfUtil, a new profiling tool.
PerfUtil provides access to the hardware-specific performance coun-
ters of the system, from the runtime layer, and enables application
profiling. In detail, the contributions of this paper are articulated
to the following:

• Demonstrate the need for better tooling support to understand
the behavior of managed applications running on NUMA sys-
tems.

• Implement PerfUtil; a new profiling tool that tracks hardware
performance counters at the runtime layer.

• Perform a detailed experimental evaluation on the performance
characteristics of a set of benchmarks from both Dacapo and
Renaissance benchmark suites.

2 METHODOLOGY
This section presents our methodology for identifying correlations
between micro-architectural events and the performance of man-
aged applications, when running on NUMA machines. Towards
that objective, we exploit Java benchmarks from Dacapo and Re-
naissance benchmark suites on a modified version MaxineVM and
collect hardware-related metrics from a two-node NUMA machine.

Table 1: NUMA machine setup.
H
W

Processor 2 x Intel Xeon E5-2690
Sockets 2

NUMA nodes 2
Num of Cores 16 (32 threads)

LLC Size 40MB
Memory Controllers 8

DRAM 384GB

SW

OS Ubuntu 16.04
Kernel Linux 4.15.0-112-generic
JVM MaxineVM 2.9

2.1 NUMA Machine Setup
Table 1 lists the hardware and software parameters of our exper-
imental infrastructure. We used two configurations: the “Single
Node” and “Dual Node” (see Table 2). The former models an 8-core
unifiedmemory access system, while the latter enables non-uniform
memory accesses (local and remote) between two NUMA nodes.
Note that, on the dual node setup we utilize the same amount of
cores (8 cores), being evenly distributed across the nodes, and dis-
able the Intel’s HyperThreading technology to bound computation
capacity that, otherwise, results to performance variation. The de-
fault NUMA allocation policy (MPOL_DEFAULT) was used along
with page migration for the Dual node configuration.

Performance Monitor Units. Modern multi-processors are
equipped with several performance monitor units, which enable
tracking of micro-architectural-specific events. In particular, they
can be either comprised of a set of fixed (i.e., measure a specific
event) or programmable counters. There is a large collection of
Performance Monitor Units (PMUs) especially in the context of a
modern NUMA system which contains several “individual” mod-
ules. Figure 2 abstractly depicts a NUMA node of the Sandy Bridge

81



You Can’t Hide You Can’t Run: A Performance Assessment of Managed Applications on a NUMA Machine MPLR ’20, November 4–6, 2020, Virtual, UK

Table 2: NUMA machine configurations.

Single Node Dual Node
Num of CPUs 1 2
Num of Available Cores 8 16
Num of Utilized Cores 8 8
LLC Size (MB) 20 40
Memory Controllers 4 8
DRAM Size (GB) 192 384
Java Heap Size (GB) 192 384
HyperThreading off off

architecture, which is used in this paper. The several sub-modules
of each NUMA node are not only shared into the scope of a single
node but also system-wide within the multiple nodes of the system.
NUMA unlocks scalability by creating a shared pool of individ-
ual resources aggregated around a low-latency high-bandwidth
two-way interconnect (QPI for Intel) across all NUMA nodes.

Figure 2: A typical NUMA node architecture.

The Uncore. Apart from the cores, a typical Intel NUMA chip
comprises of several modules, the so-called Uncore. Parts of the
Uncore are the B-Box, the C-Box, the M-Box, the P-Box, the S-Box
and many more which are out of the scope of the current work [10].
The B-Box and C-Box contain the LLC slices along with the cache
coherence infrastructure. The M-Box contains the integrated mem-
ory controllers (iMC) as well as the Home Agent which interfaces
the iMCs with the interconnect. The P-Box contains the QPI in-
terfaces responsible for the communication with the other NUMA
nodes. The S-Box is the physical QPI interconnect module.

Apart from the traditional PMUs, the Uncore is equipped with
PMUs with varying amount of counters and, thus, creating more
detailed profiling opportunities. Each counter can monitor a wide
pool of events, as defined from the silicon manufacturer (e.g. cache
access/miss, retired instructions, predictions, etc.).

2.2 Benchmarks Overview
For our analysis we use benchmarks from the traditionally estab-
lished DaCapo [3] benchmark suite and the state-of-the-art Re-
naissance [27] benchmark suite. The DaCapo benchmark suite has
been heavily used to study and evaluate different garbage collec-
tion algorithms, while the Renaissance suite aims to provide more
concurrent and modern workloads. It is also worth noting that
although the memory footprint of the DaCapo benchmarks is sig-
nificantly below the memory capacity provided by a typical NUMA
system, they have been widely used in many NUMA related stud-
ies [1, 13, 14]. An alternative would be to customize e.g. a Big Data
framework such as Apache Spark or Flink to achieve a memory
footprint of hundreds of GB. However, we consciously preferred to
use standardized benchmarks to avoid the uncertainty introduced
by customized applications and workloads. Unfortunately, due to
some instabilities in MaxineVM, the VM we augment and use for
our study, we were not able to use all the benchmarks from the two
benchmark suites. As a result we use 9 out of the 14 DaCapo bench-
marks and 17 out of 25 Renaissance benchmarks, creating a set of 26
benchmarks in total. A brief description of the key characteristics
of the selected benchmarks suites follows.

Table 3: Benchmarks configurations.

Benchmark Input Size Iterations Allocated Obj. Size

D
ac
ap

o

avrora large (max) 30 410 MB
fop default (max) 50 220 MB
h2 huge (max) 20 24 GB
jython large (max) 30 17 GB
luindex default (max) 50 30 MB
lusearch large (max) 30 12 GB
pmd large (max) 30 1.5 GB
sunflow large (max) 30 7 GB
xalan large (max) 30 12.5 GB

R
en

ai
ss
an

ce

akka-uct N/A 34 40 GB
reactors N/A 20 15 GB
als N/A 40 3 GB
chi-square N/A 70 3 GB
gauss-mix N/A 50 13 GB
log-regression N/A 30 1.5 GB
movie-lens N/A 30 12 GB
naive-bayes N/A 40 12 GB
db-shootout N/A 26 35 GB
fj-kmeans N/A 40 18 GB
future-genetic N/A 60 2 GB
mnemonics N/A 26 12 GB
par-mnemonics N/A 26 12 GB
scrabble N/A 60 3 GB
rx-scrabble N/A 90 500 MB
scala-doku N/A 30 4 GB
scala-kmeans N/A 60 200 MB

Table 3 lists the selected benchmarks, along with the exploited
input data size, the number of iterations and the allocated objects
size. We used the largest possible data input size provided by each
benchmark in Dacapo. Additionally, the number of iterations was
selected based on a prior established number able to eliminate
warmup’s non-determinism [22], which we increased by 10, to
achieve a longer end-to-end execution time. Unfortunately, Renais-
sance do not provide an option of setting the input size. Regarding
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Figure 3: The proposed profiling infrastructure.

the number of iterations in the Renaissance suite we use the default
increased by 10.

2.3 PerfUtil Profiler
To achieve high precision in our measurements and remove as
much of the runtime system’s noise as possible we augment Max-
ineVM [20], a metacircular research VM written in Java 1,2, with
the PerfUtil module. PerfUtil interfaces to the libperf OS-library
(Figure 3) and enables the monitoring of micro-architectural perfor-
mance events at the runtime layer. This gives us fine control over
when to start or stop the measurements at runtime, e.g., we can
start measuring after X full garbage collections, or Y method com-
pilations, etc. To validate our implementation of PerfUtil, we have
compared its results against the stand alone version of perf-stat
tool [31].

PerfUtil is a quite modular and flexible tool as such to be able
to model from a single performance event to more complex con-
figurations. PerfUtil also supports perf event groups and monitor
scope. The notion of the group ensures that a set of architecturally
related events are all simultaneously measured for the same period
of time. As such, their values are directly comparable. On the other
hand, the monitor scope allows an event to be monitored either
per thread, per core or both. Using the thread scope, we bind the
monitoring events at VM-level and, thus, reduce the noise intro-
duced by the rest of the processes running simultaneously on the
system. Additionally, a thread scope can also be combined with a
core scope resulting in monitoring a specific thread in a specific
core. However, there are some PMUs that cannot be utilized per
thread such as the those of the memory controller. Consequently, a
per core scope is necessary.

2.4 Tracked Events
The key feature of NUMA machines is that the memory access
latency may vary significantly depending on the location of the
memory being accessed. For that purpose, we chose to monitor
NUMA-related events that could help us understand the kind of
accesses performed by the applications (i.e. local access vs. remote
access). In particular, the PerUtil tool was exploited to monitor the
following events:
• Last Level Cache (LLC) miss: A LLC read or write miss in a
non-NUMA architecture leads inevitably in accessing the main

1MaxineVM’s modularity and ease to extend was the key enabling factor for this
decision.

2https://github.com/beehive-lab/Maxine-VM

memory (i.e. the DRAM). However, this is not the typical pro-
cedure for the NUMA systems. On a NUMA machine, a LLC
miss occurs when the requested data has not been found in the
Local LLC, although, they could potentially be retrieved from a
remote node LLC. In particular, on a LLC miss, the caching agent,
initially, broadcasts the miss event to the other nodes via the
interconnect, before accessing the memory. In case that a remote
LLC slice has a valid copy of the requested data, the LLC miss
is a remote LLC hit and, thus, avoids the main memory access.
On the contrary, the local or remote DRAM memories have to
be accessed. Therefore, a LLC miss in a NUMA machine corre-
sponds to a local LLC miss [15]. Finally, note that the process of
fetching the data from the remote node significantly penalizes
the performance of the application.

• Node Read/Write: This event refers to the number of memory
accesses (either reads or writes) served locally [19].

• Node Read/Write miss: This event refers to the number of LLC
and memory accesses served by a remote NUMA node. Note that,
this event should not be confused with remote memory accesses
[19].

• Memory controller: This event refers to the read and write re-
quests arriving to the memory controller (iMC) in a system-wide
scope. In particular, each memory controller monitors the incom-
ing requests issued by the application, the managed runtime, the
OS or by any other running process on the system [10].

Although for the purpose of this study we traced a specific set of
performance events, the PerfUtil profiling tool can be seamlessly
exploited to monitor any event that is provided by the underlying
hardware architecture (e.g. branch predictions, L1 or L2 hit/miss,
etc.).

2.5 Measurement Methodology
PerfUtil events. As mentioned in Section 2.3 the events collection

is dynamically controlled by the extended managed runtime sys-
tem. PerfUtil has been configured to monitor the events of choice.
However, in many cases it was impossible to concurrently monitor
all the events due to the limited amount of the physical hardware
counters. Thus, to avoid multiplexing and its shortcomings (i.e., pre-
cision loss), we perform more than one runs per benchmark; each
configured to gather a different set of metrics. All the events, except
for the memory controller where this is not possible, are measured
using the per thread monitoring scope to isolate the results from
other processes’ potential interference.

Thread count control. The number of threads was set to eight to
match the number of utilized cores in both the Single and Dual node
configurations. However, some benchmarks do not comply with
such an option (e.g., avrora inevitably spawns 32 threads when run
with the large input size). For those, we adhered to the default thread
amount configuration set by the application. Note also that even
the single threaded applications utilize multiple threads due to the
five JVM-internal threads, which are mostly idle during application
code execution.

Heap size. The JVM heap size was configured to 192 GB for
Single Node and to 384 GB for Dual Node to match the underlying
physical memory capacity. In practice, this means that no garbage
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collections are triggered due to running out of heap space. However,
all benchmarks perform an explicit GC before every iteration as
part of the benchmark suites’ harnesses. In our measurements we
include the events triggered by these GC operations as well.

Gathering the measurements. Each measurement session covers
the corresponding application’s end-to-end execution including all
iterations and the GC operations between them. Warm-up itera-
tions are also included, however due to the chosen large amount of
iterations they have a minor effect on final results, thus we chose
to include them and provide end-to-end results.

3 ANALYSIS
In this section, we present our experimental results, as derived from
the comprehensive performance analysis of two benchmark suites
(more details in § 2.2), when running on top of a NUMA machine
(more details in Tables 1 and 2).

3.1 Locality Evaluation: LLC misses
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Figure 4: LLC miss rate in Dacapo benchmarks.

LL
C

 M
is

s 
R

at
e 

%

0%

20%

40%

60%

ak
ka

-uct

rea
cto

rs als

ch
i-s

quare

gau
ss

-m
ix

log-re
gres

sio
n

movie
-le

ns

naiv
e-b

ay
es

db-sh
ootout

fj-k
mea

ns

future-
gen

eti
c

mnem
onics

par-
mnem

onics

sc
rab

ble

rx-
sc

rab
ble

sc
ala

-doku

sc
ala

-km
ea

ns

Single Node Dual Node

Figure 5: LLC miss rate in Renaissance benchmarks.

This section presents the measured LLC miss rate for the Dacapo
and Renaissance benchmarks. On a NUMA machine, an increased
amount of LLC misses (or, adversely, remote node hits) constitutes
a strong indication of a high volume of shared objects. Additionally,
the thread migration policy can also affect the LLC miss rate. For
example, consider Thread (T1) is running on core 0 (within Node 0)
and is writing Object-A on the Local LLC. However, T1 migrates
to another NUMA node (e.g., to Core 3, on Node 1). In that case, if

T1 attempts a write operation on Object-A, a LLC write miss will
occur (which doesn’t happen on the single, non-NUMA setup), the
updated data will be written in Core’s 3 LLC slice and an update
operation to invalidate the copy of Core’s 0 will also be triggered
(i.e., a cache invalidation).

Figures 4 and 5 present the LLC Miss rate for the Dacapo and Re-
naissance benchmarks. A key finding is that avrora, xalan, akka-uct,
reactors, als, movie-lens, db-shootout, fj-kmeans, future-genetic,
par-mnemonics and scrabble applications demonstrate a consider-
able increase in the LLC Miss rate of the dual node setup, when
compared to the single node setup. This behavior is justified for
avrora and xalan [17] application due to the high volume of write
operations on shared objects. Accordingly, this behavior on the
other benchmarks is attributed to the high number of cache invali-
dations.

The fork/join applications, such as the scrabble (which exhibits
the highest increase in LLC miss rate, ranging from 17% to 53%),
fj-kmeans, future-genetics and par-mnemonics, have sub-optimal
utilization of the available compute resources and thus they can-
not take maximum advantage of the available parallelism, which
is provided by a NUMA machine [28]. In particular, these appli-
cations generate a small number of big, unbalanced tasks with
data dependencies and lack of concurrency [28]. That said, our
LLC miss rate findings are also a natural explanation of this behav-
ior. Finally, it was counter-intuitive that the akka-uct and reactors
benchmarks show high LLC miss rate on the dual node setup since
actor frameworks, through the event-driven message-passing mech-
anism, simplify thread communication and synchronization thus
minimizing data dependencies.

Overall, this set of experimental results highlight the importance
of having a NUMA capable profiling tool that would assist software
engineers to understand and develop an efficient mitigation strategy
for handling the excessive amount of share objects that prevents
the exploitation of computing capabilities of a NUMA machine.

3.2 Locality Evaluation: Remote Node Accesses
This section analyzes the remote node access rate for Dacapo and
Renaissance benchmark suites.

N
od

e 
M

is
se

s 
%

0%

25%

50%

75%

100%

avrora fop h2
jython

luindex

lusearch
pmd

sunflow
xalan

Node Read Misses Node Write Misses

Figure 6: Dacapo node miss rate.

The analysis of remote node access rate in relation to the LLC
miss rate provides a better insight about the performance impact
of a NUMA machine. As already stated, a remote node access is a
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Figure 7: Renaissance node miss rate.

memory operation served by a remote NUMA node, since it has
missed on the local memory-hierarchy. We define this behavior as,
node miss (see § 2.4). Figures 6 and 7 show the node miss rate for
both read and write operations, as a percentage of the LLC read and
write misses.

A high amount of shared object accesses results in a high node
miss rate and in a moderate application speed up when running
on NUMA machine. Therefore, even though, remote node access
operations are used to increase the application’s memory capacity
and, thus, avoid accessing the high-latency storage device, they
should be carefully handled. For instance, avrora and xalan bench-
marks have the highest node write miss rate (81% and 60%, respec-
tively), since they encounter the highest amount of shared write
accesses [17]. Additionally, avrora, akka-uct, fj-kmeans and scrab-
ble (and many other benchmarks) show a considerable performance
slowdown, when running on the dual node configuration. This be-
havior highlights the high correlation between performance and
node miss rate. Additionally, h2 benchmark has 5% speedup in the
NUMA setup (i.e., Dual Node configuration) by showing relatively
low remote node accesses (49% and 45% node read and write miss,
respectively). As intuitively expected, the single-threaded appli-
cations have lower node write miss rate (median value is 2.7%),
when compared to multi-threaded application, since they do not
exhibit shared written objects. However, it is notable that other
benchmarks of relatively high node miss rate (i.e., xalan with the
second highest node write miss rate) show considerable speedup
in the NUMA setup. Such a fact indicates that, along with NUMA,
various layers/factors of a modern stack practically interfere and
thus might be decisive for an application’s overall performance (see
§ 4.1).

Overall, the object placement related MRE components (e.g., the
Garbage Collector and the threads) influence on local versus remote
node memory utilization can possibility affect the application’s
performance.

3.3 Load Balancing
Many studies highlight the importance of having a load balanced
execution of workloads on the available hardware resources [4, 11,
23] of a NUMA system. That said, this section presents and analyzes
the load distribution of each memory controller (iMCx) for the
employed testbed (eight memory controller, Table 2). In particular,

Figures 8 and 9 show the percentage of memory requests served by
each controller, over the total amount of memory requests issued
by each application. Finally, note that the presented experimental
results are an aggregation of the memory requests issued to the
controller from both the application-, OS- and runtime-level.
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Figure 8: Dacapo memory controller load in dual node.
Optimally, a linearly scalable application should uniformly dis-

tribute the memory requests across all memory controllers. In our
experimental setup, this is translated to a threshold of 12.5% of the
overall memory requests to be served by a single controller (i.e.,
the dashed line on Figures 8 and 9). Therefore, the closest to that
threshold a benchmark is, the more equally distributed the load
will be.

Based on our experimental findings, fj-kmeans and scrabble
benchmarks have the most unbalanced utilization of the available
memory controller. In particular, a single, over-congested memory
controller serves 35% and 49% of the overall load for the fj-kmeans
and scrabble, respectively. Additionally, this observation verifies our
benchmark analysis (§ ??), in which fork/join applications suffer
from sub-optimal forking, which, in turn, leads to uneven task
distribution. On the contrary, applicationswith explicit concurrency
and parallelization, such as h2, lusearch, and sunflow, are able to
scale very close to the linear scalability threshold.

There are still some benchmarks, in which NUMA performance
doesn’t seem to be easily explained with the metric used so far. For
example, lusearch is totally balanced but slows down in NUMA
execution, while pmd has unbalanced utilization of thememory con-
trollers but it achieves to speed up. However, our analysis regarding
the OS mechanisms (i.e., page migration and DVFS) that affect the
performance of managed applications achieve to adequately explain
this abnormal behavior (more details on § 4.1).

4 DISCUSSION
In this section we further discuss OS mechanisms that affect the
behavior of managed applications, key findings and, finally, the
limitations of our work.

4.1 OS Mechanisms
To highlight the importance of factors external to the application
and show how they affect performance, even without always affect-
ing the low-level metrics gathered through PerfUtil, we perform a
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Figure 9: Renaissance memory controller load in dual node.

set of additional experiments by turning off Page Migrations and
Dynamic Voltage and Frequency Scaling. We find that both these
factors have a considerable effect on the applications execution
time.

4.1.1 Page Migration Effect. Page Migration (PM) or Auto-
NUMA [7] as an OS optimisation aims to enhance performance by
periodically moving memory pages across NUMA nodes. The mi-
gration algorithm works as follows, the OS periodically invalidates
memory pages; thus provoking “artificial” page faults the next time
the page is accessed. An artificial page fault handling results in
page migration to the NUMA node of the thread responsible for the
page fault [7–9]. This way pages get re-shuffled periodically based
on the heuristic that the thread that performs the most accesses to
a page will end up fetching the page to its NUMA node more times
than the rest, thus increasing locality and reducing remote node
accesses. However, the overhead of migrating a 4 kB memory page
is significantly higher than a remote node access [32]. Therefore,
the restrained remote node accesses cost due to a page migration
should bemore than the migration overhead itself, to improve over-
all performance. Thus, the trade-off improved locality v.s. the page
fault and page move costs introduced by this mechanism might not
always be beneficial.

Table 4 depicts the effect of PM on Dacapo and Renaissance node
misses and execution time. The reported percentages are calculated
using the following formula for the corresponding value of each
column.

Value with PM on −Value with PM off

Value with PM off
× 100

Negative numbers denote a decrease in the value due to PM and
are considered better. We see that in all cases, except for Xalan,
Fj-kmeans, and Scrabble page migration manages to reduce the
overall node misses. However, it is noteworthy that despite the
decrease of the overall node misses PM doesn’t have the same effect
on the execution time. Only Fop, H2, Jython, and Scala-doku seem
to benefit from page migration, while most of the other benchmarks
perform worse. At a first read these numbers appear to indicate that
there is no correlation between node misses and execution time,
which is counter-intuitive. This anomaly is explained by the fact

that page migration itself comes at a cost. The periodic invalidation
of the pages increases the number of page faults which in turn
results in additional overheads due to the page fault handling mech-
anism. Furthermore, whenever a page is moved to a different node
an additional overhead for the page copy is payed. The sum of these
overheads seems to offset the benefits gained by the reduced node
misses in our experiments. Consequently a trade-off is emerging;
in what extent is such a mechanism actually beneficial in the context
of MREs and under which conditions?

Counter-intuitive cases such as Xalan, where PM further in-
creases the node misses reflects that overall performance is not
only impacted by locality. This makes clear that optimisations tar-
geting only in data locality do not always guarantee improved
performance. Other NUMA-related studies agree to that fact as
well, while they highlight factors of greater importance such as
interconnect contention, memory controller congestion and un-
balanced load [4, 11]. Additionally it hints that the OS might not
be the proper “place” for NUMA optimisations in the context of
managed applications. A NUMA-aware JVM can more effectively
avoid hurting locality by taking over its own thread scheduling
from the OS [26].

4.1.2 Dynamic Voltage and Frequency Scaling. Dynamic Voltage
and Frequency Scaling (DVFS) can significantly improve the per-
formance, but at the same time may skew measurements making
correlations between NUMA-related metrics and performance even
harder. As shown in Figure 1, sunflow gains 15% speedup on the
Dual Node (vs. Single), despite its high node miss rate (about 50%,
Figure 6). To better understand that, we monitored operating fre-
quency and revealed that sunflow was running, on average, at a
different frequency on the Single Node vs. the Dual Node config-
uration (i.e. 18% higher). As a result, this finding indicates how
ostensibly unrelated optimizations mechanisms may skew mea-
surements and misguide us.

4.2 Take-Away Messages
The main objective of this work is to assist software engineers
to better understand the peculiarities of NUMA machines, when
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Table 4: Page migration effect on Dacapo and Renaissance.

Benchmark Node WMisses Node R Misses Exec. Time Benchmark Node Wmisses Node R Misses Exec. Time
avrora 1% -1% 0.03% gauss-mix -10% -34% 11.27%
fop -55% -46% -1.08% log-regression -36% -28% 3.86%
h2 -70% -62% -9.89% movie-lens -17% -11% 8.93%
jython -70% -80% -4.03% naive-bayes -23% -80% 16.02%
luindex -76% -35% 4.43% db-shootout -13% -7% 15.81%
lusearch -6% 3% 13.12% fj-kmeans -2% 24% 48.17%
pmd -17% -25% 4.24% future-genetic -2% -1% 1.52%
sunflow -3% -2% 1.63% mnemonics -100% -89% 2.60%
xalan 311% 295% 0.03% par-mnemonics -39% 20% 3.74%
akka-uct -9% -5% 13.37% scrabble -8% 88% 36.07%
reactors -25% -5% 1.54% rx-scrabble -4% -50% 1.15%
als -18% -20% 2.60% scala-doku -95% -70% -5.15%
chi-square -9% -53% 6.12% scala-kmeans -48% 23% 0.02%

executing managed applications. To address that objective, this
section summarizes our key findings.

• Threads grouping: Schedule software threads, which share ob-
jects, on the same NUMA node to avoid excessive remote node ac-
cesses and cache invalidations. Note that oversubscribing threads
to a single NUMA node may have the opposite results, due to
increased interconnect connection.

• Threads spreading: Spread threads that do not share objects to
the available NUMA nodes as much as possible. This will help
achieve more uniform utilization of memory controllers.

• NUMA-aware garbage collection: Augment GC algorithms
with NUMA-aware heuristics to improve objects’ data locality
and to avoid excessive amounts of remote accesses during the
GC phase.

• High-level programming frameworks: Augment high-level
programming frameworks with NUMA-aware heuristics to avoid
data contention. As our experimental results demonstrated, the
high variation in LLC miss rate between non-NUMA and the
NUMA configurations is a strong indication of a high volume of
shared written objects (see § 3.1 and § 3.2).

• Memory controller utilization: Avoid high utilization of mem-
ory controllers, since it can result to higher performance over-
head, when compared to remote node accesses (e.g., fj-kmeans
86%, scrabble 134% performance overhead, see § 3.3).

• Thread and datamovementmanagement: Managed runtime
should be able to control thread and/or data movements within
the available node in order to avoid an unnecessary migration
that would penalize performance (see § 4.1).

• Page migration: OS level mechanisms appear to do more harm
than good in the context of managed applications (see § 4.1.1).
Therefore, it is suggested to pass their control over the runtime.

4.3 Limitations
Our test-bed has 192 GB of DRAM per node, while the exploited
benchmarks can allocate up to 40 GB. As a result, this work only
covers the behavior of applications that are expected to co-exist
with other applications in a NUMAmachine, since they can’t utilize
the available resources on their own. A study of larger applications
that could utilize the whole machine is expected to unveil even

more interesting facts about the nature of NUMA machines and
the behavior of managed applications on them. Unfortunately, to
the best of our knowledge there is no standardized benchmark
suite with benchmarks large enough to utilize a NUMA machine,
even with only two NUMA nodes. Therefore, benchmarks with
memory footprint from hundreds of GB to tens of TB, ideal for
NUMA research, are a necessity.

Currently, PerfUtil can be easily used to correlate low-level met-
rics with specific phases of the runtime, but unfortunately it’s not
able to attribute low-level metrics to a specific Java thread, or data
structure. As a result, the micro-architectural metrics used to per-
form this study can only provide an indication about the existence
of a bottleneck. Therefore, a high-level study, in the context of
managed runtime, able to isolate the sources of inefficiencies is
necessary.

5 CONCLUSIONS
Clearly, porting managed applications to a NUMA machine is a
non-trivial task. Software engineers have to considermultiple, cross-
layer performance events and configurations, in order to be able to
understand how the NUMA architecture affects the applications’
performance. It is evident though the importance of having a pro-
filing tool that is capable of monitoring a wide range of system
events. Towards that objective, this paper presents a new profiling
tool, so called PerfUtil. PerfUtil’s effectiveness is based on its ability
to track numerous events throughout the system that, ultimately,
assists in demystifying NUMA peculiarities and accurately char-
acterize managed applications profiles. Finally, we have reported
our findings in the context of the traditionally established Dacapo
benchmark suite and the state-of-the-art Renaissance benchmarks.
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