
Efficient Compilation and Execution of JVM-Based
Data Processing Frameworks on Heterogeneous Co-

Processors
Christos Kotselidis

The University of Manchester
first.last@manchester.ac.uk

Ioannis Komnios
Exus Ltd.

i.komnios@exus.co.uk

Orestis Akrivopoulos
SparkWorks ITC Ltd.

akribopo@sparkworks.net

Sebastian Bress
German Research Center for Artificial Intelligence

sebastian.bress@dfki.de

Katerina Doka
National Technical University of Athens

katerina@cslab.ece.ntua.gr

Hazeef Mohammed
Kaleao Ltd.

hazeef.mohammed@kaleao.com

Georgios Mylonas
Computer Technology Institute & Press Diophantus

mylonasg@cti.gr

Vassilis Spitadakis
Neurocom Luxembourg

v.spitadakis@neurocom.lu

Daniel Strimpel
IProov Ltd.

daniel.strimpel@iproov.com

This paper addresses the fundamental question of how modern
Big Data frameworks can dynamically and transparently exploit
heterogeneous hardware accelerators. After presenting the major
challenges that have to be addressed towards this goal, we describe
our proposed architecture for automatic and transparent
hardware acceleration of Big Data frameworks and applications.
Our vision is to retain the uniform programming model of Big
Data frameworks and enable automatic, dynamic Just-In-Time
compilation of the candidate code segments that benefit from
hardware acceleration to the corresponding format. In
conjunction with machine learning-based device selection, that
respect user-defined constraints (e.g., cost, time, etc.), we enable
dynamic code execution on GPUs and FPGAs transparently to the
user. In addition, we dynamically re-steer execution at runtime
based on the availability of resources. Our preliminary results
demonstrate that our approach can accelerate an existing Apache
Flink application by up to 16.5x.

I. INTRODUCTION

Several Big Data frameworks have emerged to address the
ever increasing data generation and satisfy the processing needs.
Regardless of the programming model or features that each
framework offers, their scalability is mainly achieved through
the following techniques: (1) scale-up by increasing the
resources of a single node (e.g., Saber [24], Streambox [29]), (2)
scale-out by increasing the number of nodes (e.g., Apache Spark
[34], Apache Flink [14], Storm [6]), or (3) manual
implementation of code optimizations specific to the underlying
hardware, such as GPU offloading [22], [31].

Typically, the scale-up and scale-out approaches concern
CPU-only deployments, while manual scalability in the form of
ad-hoc optimizations and hardware acceleration targets the
emerging heterogeneous data centres infrastructures. Hardware
accelerators are constantly gaining popularity for Machine
Learning and Big Data Analytics workloads, since they often
outperform general purpose CPU-based implementations, due to
their massive capabilities for parallel execution [26] and energy
efficiency. As a result, cloud vendors have been motivated to
include specialized hardware accelerators in their offerings,
along with general purpose resources (e.g., Amazon’s EC2
Elastic GPUs [3] or FPGA instances [4], Google’s TPU [7]).
Recently, cloud/cluster management software systems such as
Apache Yarn [32] and Mesos [5] have provided support for

heterogeneous hardware through their API over bare metal,
Virtual Machines or even Docker containers [8]. The
exploitation of heterogeneous hardware accelerators by Big
Data applications is a challenging task. This is, mainly,
attributed to: (1) the CPU-only homogeneous design
assumptions of Big Data frameworks; (2) the fragmentation of
programming models across different devices; and (3) the lack
of compiler and runtime support for heterogeneous hardware, by
the underlying execution engines of the Big Data frameworks -
mainly Java Virtual Machines (JVMs).

To enable the exploitation of heterogeneous hardware
accelerators by Big Data applications, we propose novel
pluggable extensions to the existing software components of a
Big Data stack. The proposed stack is capable of adapting itself
to the underlying heterogeneous hardware resources, while
retaining a unified, high-level programming model. Finally, the
proposed extensions are technology-independent and can be
adopted by any technology vendor.

II. CHALLENGES

This section presents, in detail, the challenges in exploiting
heterogeneous hardware accelerators by Big Data frameworks.

A. Programmability

Contemporary Big Data frameworks such as Apache Spark
[34], Apache Flink [14], and Storm [6] are implemented on top
of the Java Virtual Machine (JVM) due to their portability across
different platforms and operating systems, and interoperability
with high-level programming languages like Java and Scala.
However, the majority of production JVMs generate code only
for CPUs. Consequently, software developers have to generate,
ad-hoc, code suitable for execution on a heterogeneous device
(e.g., a GPU or an FPGA). Although this approach is commonly
found in the literature (e.g., HadoopCL [22], HeteroDoop [31],
Glasswing [19], and HeteroSpark [27]), it has a number of
disadvantages that limit its general applicability.

Code fragmentation: Developers must integrate different
programming models and languages in their code bases [22],
[19], [27]. For example, developers have to mix Java and Scala
code with low-level CUDA, OpenCL, or similar APIs [2] for
GPU acceleration. This creates not only programmability
challenges, since programmers with high expertise are required,

but also negatively impacts code maintainability by requiring
familiarization with different concepts, APIs, and toolchains.

Lack of code portability: The accelerated code segments
are developed for a particular device or family of devices [31].
Migrating to a different cloud provider, hardware vendor or even
between devices of the same type and vendor [12], [30] requires
porting of the corresponding code segments to new devices. This
is attributed to the fact that the low-level programming models
used for programming heterogeneous accelerators do not adhere
to the “write-once-run-anywhere” paradigm of Java.

Lack of dynamism: The underlying JVM cannot
reconfigure, at runtime, the accelerated code segments [31],
[19], [27]. The lack of dynamism impacts both the performance
of the application as well as the potential cost of deployment.
Applications are essentially limited to use only the resources
they have been programmed for, as they are incapable of
dynamically reconfiguring the accelerated code segments.

Ideally, Big Data frameworks should support runtime
systems capable of arbitrarily compiling any code segment to
any hardware device transparently to the user. Unfortunately,
though, adding heterogeneous support on JVMs is a complicated
task as several language features (e.g., dynamic code dispatch,
automatic memory management, de-optimization) must be
properly handled in order not to violate the semantics of the
JVM. As a result, with the exception of IBM’s J9 GPU support
[23], [9], the majority of JVM-based solutions for heterogeneous
execution are research prototypes. IBM J9 essentially translates
Java 8 parallel streams to GPU code [23], thus limiting the code
that can be accelerated to a strict subset of Java. To increase the
range of applications that can be transparently accelerated, IBM
J9 recently started accelerating Spark workloads on GPUs [9].
Future heterogeneous JVMs for Big Data frameworks should
support not only GPUs but also application-specific accelerators
(e.g. FPGAs), while allowing the dynamic migration of different
parts of the running applications across these devices without
restarting them.

B. Task Composition and Scheduling

On homogeneous systems, simple heuristics, such as one
worker per core, or other best practices1 are used to schedule
worker threads onto the available physical nodes. Therefore,
task composition and scheduling are related to monitoring the
task queues of the available workers and selecting those with the
lighter load. However, on heterogeneous systems, such
scheduling techniques are not applicable, since the
computational capacity of the available devices might differ by
up to three orders of magnitude [21]. In addition, apart from
some cases [10], most of the hardware accelerators can only be
managed by a single worker, since they do not allow application
virtualization like CPUs do.

To fully utilize heterogeneous hardware, Big Data
frameworks will have to non-uniformly distribute the
computation of their applications across the heterogeneous
resources that exhibit different computational characteristics.
For instance, CPUs and GPU accelerators have disjoint memory
spaces. As a result, the data must be explicitly allocated and
transferred from a CPU to the targeted GPU in order to be
accessible by the latter. Additionally, the decision to exploit
GPU acceleration is made during scheduling; therefore, the

1 https://tinyurl.com/ul83glj

device availability must have been guaranteed till the moment at
which execution is actually performed. Otherwise,
unpredictable performance behaviours will arise, since the task
has to be rescheduled on another GPU (if available) or re-
composed for CPU execution. Thus, future Big Data
frameworks should factor in the time required to perform bulk
copies of data across the heterogeneous hardware resources, as
well as being able to dynamically react to load imbalances.

C. Data Processing Granularity

Apart from task composition and scheduling across the
whole cluster or the cloud deployment, a heterogeneous Big
Data framework should also account for the data partitioning
within a node. Different hardware accelerators not only feature
different processing capabilities, but may also perform
differently under different workloads [15], [16], [20].
Consequently, heterogeneous Big Data systems need to
dynamically choose the best data partitioning scheme for each
task on a per device basis.

Processing Timeliness: Most hardware accelerators require
data to be transferred from the host memory space to their
memory space in order to get processed. However, this data
transfer incurs a significant performance overhead. To
circumvent this inefficiency, software engineers prefer to
transfer sufficient amounts of data in advance, to offset this
overhead from execution time.

Although this execution characteristic can be seamlessly
applied to batch execution models, the same does not hold for
stream analytics. In particular, delaying data processing in order
to gather enough data to get the best performance out of a
hardware accelerator comes at the cost of increased latency. In
turn, the increased latency can reduce the validity or value of the
returned results, when processing time-critical data that their
value is highly dependent on their lifespan. Therefore,
heterogeneous Big Data frameworks should consider such trade-
offs and adapt themselves to the best combination in order to
satisfy the applications’ requirements. Choosing enough data to
benefit from acceleration while maintaining the latency
requirements of applications is a significant challenge.

Fault Tolerant Operation: Guaranteeing the fault tolerance
in large-scale clusters or in cloud deployments is of paramount
importance. As a result, modern Big Data frameworks exploit
checkpointing mechanisms to tolerate nodes’ failures [13]. On
homogeneous systems, checkpointing is achieved with minimal
overhead since the data to be checkpointed is already in the
host’s memory. On the contrary, on heterogeneous deployments
the checkpointing process triggers a data transfer from the
accelerator’s memory to the host’s memory, before the
application’s state is stored. This operation is quite discouraged
in hardware acceleration, since it negatively impacts
performance. Thus, identifying the optimal checkpointing
granularity in heterogeneous deployments is a first-order
challenge.

III. THE PROPOSED ARCHITECTURE

To address the aforementioned challenges, we are
developing a novel Big Data execution framework capable of
exploiting heterogeneous resources, dynamically and

transparently to the user. Figure 1 illustrates the workflow of the
proposed framework. As shown, the Big Data Framework

receives the user applications and constructs a Job Graph. Next,
it identifies on which device these tasks should execute.

Figure 1: The workflow of the proposed framework.

To do so, it employs the front-end compiler of the Execution
Engine to perform a mock partial compilation of each task in
order to extract code features (branches, loops, floating point
operations, etc.). Then, the Scheduler feeds this information to
its Execution Model to predict the hardware device on which
tasks should execute to meet the users’ requirements. Finally,
the Job Manager sends the tasks to the Task Managers that host
the desired hardware accelerators. Note that execution is
continuously monitored to detect any hardware failures which
may trigger a new data partitioning and scheduling to different
types of devices. The following subsections present the key
software components of the proposed framework in more detail
along with their interoperability.

A. Execution Engine

The proposed framework enables heterogeneous execution
at the JVM level, where the worker nodes of the Big Data engine
runs. The employed technology that we use is based on the
TornadoVM [17], [21], [25]; a JVM capable of executing vanilla
Java code on heterogeneous devices. TornadoVM works in
cooperation with standard JVMs (e.g., HotSpot [28]) allowing
the seamless integration of the acceleration functionality to
existing deployments.

TornadoVM consists of the following components: 1) The
TornadoVM API which enables developers to identify code
that can be accelerated, as well as composing and building
pipelines of multiple tasks, where dependencies and
optimizations between the tasks are automatically managed by
the runtime layer; 2) The TornadoVM JIT Compiler that
dynamically generates optimized machine code for
heterogeneous devices; and 3) The TornadoVM Runtime that
performs data dependence analysis, optimizes data transfers, and
orchestrates the parallel execution between the host and the
heterogeneous target device.

By utilizing TornadoVM, the proposed software stack is able
to dynamically –at run-time– compile Java bytecode to machine
code targeting CPUs, GPUs, and FPGAs. Furthermore, it is able
to profile the executed code and discover the best performing
hardware device for each code segment, according to a user-
defined optimization policy (maximum performance, minimum
cost, etc.).

B. Scheduler

The Hardware-Aware Intelligent Elastic Resource Scheduler
(HAIER) maps the tasks to the available heterogeneous
resources. To produce an optimal execution plan HAIER
analyses input data from 1) compiler extracted code features, 2)
Big Data framework’s task graphs, and 3) resources’
availability. Then, the scheduler allocates each task to the most
beneficial set of hardware resources, in order to conform to a
user-defined optimization policy. The optimization process is
based upon detailed models of the cost and performance
characteristics of tasks over various underlying hardware, such
as CPUs, GPUs or FPGAs. The models are stored and updated
in a model library and whenever a new task graph is scheduled
for execution through HAIER, they are used in order to
intelligently assign workflow parts to the available hardware
according to the user optimization policy. Once the optimal
execution plan is available, it is delegated back to the
Heterogeneous-aware Big Data framework and be enforced
through a cluster management framework that can handle
heterogeneous resources (e.g., Apache YARN [33]). The
workflow execution is monitored for failures and/or
performance degradation, at runtime, allowing HAIER to
dynamically adapt to the current conditions by creating a new
execution plan for the remaining tasks.

The HAIER scheduler is comprised of the following
components. 1) Planner: Determines, in real-time, where each
task should be scheduled and whether data needs to be moved
to/from their current locations and between processing units.
Such a decision must rely on the characteristics of the involved
tasks, which derive as code features by the compiler, and the
underlying hardware they execute upon. 2) Models Library:
This module consists of machine learning models that describe
the behaviour of each hardware processing unit in terms of
performance, cost, energy efficiency, etc. 3) Profiler/Modeller:
The initial task models result from the offline profiling of this
module, that directly interacts with the pool of physical
resources and the monitoring layer in-between. 4) Model
Refinement: While the workflow is being executed, the initial
models are refined online by this module, by using monitoring
information of the actual executions.

Use Case Processing Data Type Volume Key Algorithms
Health Analytics Batch Text Up to TBs Alternating Least Squares, Linear Algebra
Natural Lang. Proc. Batch/Stream Text Up to TBs Lexicographical/Statistical fuzzy Matching
Green Buildings Stream Text Up to 100s of GBs Reductions, Linear Algebra
Biometric Security Batch/Stream Video/Images Up to TBs ColorMorph, Computer Vision Algorithms

Table 1: Characteristics of the use-cases.

This mechanism facilitates dynamic adjustments of the models
and enables the planner to base its decisions on the most up-to-
date knowledge. 5) Execution Monitor: monitors the execution
to detect possible failures and/or performance degradation and
acts accordingly.

C. Big Data Framework

The TornadoVM and the HAIER scheduler are integrated
with Apache Flink [14] to form the proposed heterogeneous-
aware Big Data framework. Flink follows the common
programming model popularized by MapReduce [18]. The
developer encapsulates the functionality of the data analysis task
into user-defined functions (UDFs) which are passed to
operators that model second-order functions, such as map or
reduce. Whereas each UDF call processes a single tuple, these
operators determine how UDFs process data in parallel [11]. The
operators are assembled into a Job Graph which represents a
complete data analysis task. To orchestrate the execution of a
Flink job on a cluster, Flink transparently ships the application
logic to different worker nodes, partitions the data, and initiates
and monitors the execution of the operators.

To accelerate the execution of the data analysis task, we fuse
UDFs with their second-order operators, so they can be executed
in parallel on hardware accelerators. Supporting operations,
such as data shuffling, partitioning, or joins, are also fused and
executed on the accelerators, so that data is only touched once.
Note that we aim to generate the code that runs on accelerators
transparently, without any additional intervention by
developers.

In Flink, the Job Manager orchestrates the execution of the
data analysis task. Each worker node is represented by a Task
Manager which offers task slots as a unit of execution. Flink
assumes that worker nodes are uniform, and schedules operators
on any free task slot. Machines with different capabilities are
supported by scaling the number of task slots, that each worker
node provides.

However, in heterogeneous systems, the execution
capabilities of different devices can differ by orders of
magnitudes. This is particularly true when generating custom
hardware configurations running on FPGAs. Therefore, we
extend Flink to explicitly model the hardware capabilities of the
cluster. Task Managers communicate the presence of hardware
accelerators as well as their performance and power
characteristics to a central cluster manager. Furthermore, Task
Managers offer GPU and FPGA specific task slots in addition
to CPU-based task slots that Flink already provides. The Job
Manager in turn distributes work to the appropriate Task
Managers as determined by the HAIER scheduler.

IV. PRELIMINARY EVALUATION

To demonstrate the potential of our proposal we have built a
prototype that integrates TornadoVM in the Apache Flink
framework. To evaluate its performance we use the kmeans
algorithm and run 10 times in batches of 10 jobs each. The

batches of 10 jobs ensure that the JVMs have stabilized, while
the 10 iterations allow us to observe the reproducibility of the
results. TornadoVM extracts a set of eight acceleratable kernels
from the k-means Java source code [1] and creates three groups
of kernels that can run as pipeline on an accelerator without
interacting with the host. Kernel loading, synchronization, and
data transfers from and to the host are handled automatically.

For the testbed we use a single node with a 4-core (8-threads)
Intel Core i7-7700K CPU and an NVIDIA Quadro GP100 GPU.
In our experiment we measure end-to-end execution time,
including all data transfers, and data marshalling and un-
marshalling to and from the GPU.

Figure 2 illustrates the performance for varying workload
sizes. On the y-axis is the average end-to-end execution time of
the 10 batches in logarithmic scale, while on the x-axis is the
workload size in bytes. The black lines on the bars indicate the
standard deviation of the runs. We observe that up to 256 KiB
the integrated version performs slightly worse (~10%) than the
original Flink. This is due to the fact that at the current state of
the integration, the code is always run on the GPU, even if it is
not the best option. Note that the proposed framework is able to
dynamically choose the best device. After the 256 KiB point and
as the workload size increases the integrated version
outperforms the vanilla Flink system by up to 16.5x. This is
attributed to the fact that by increasing the workload size, we
exploit more GPU parallelism and the performance gains
compensate for the data transfer overhead. With the whole stack
in place and with more effort on optimizing the code generation,
we anticipate performance to further improve.

Figure 2: Execution times (Flink+Tornado vs Flink).

Ultimately the proposed stack is going to be evaluated using
four applications from four different domains: (1) Health
Analytics: A real-time streaming use case for predicting
patients’ hospital re-admissions; (2) Natural Language
Processing: A sentiment analysis and opinion mining to enable
fraud detection; (3) Green Buildings: Enabling energy efficient
buildings based on analytics of data derived from Internet of
Things deployed sensors; and (4) Biometric Security: Real-
time video recognition to enable biometric authentication. Table
1 presents the features of the use cases that will be used to assess
the proposed heterogeneous Big Data deployment. Additionally,

a wide spectrum of hardware configurations will be exploited,
including: 1) x86-based systems with NVIDIA and AMD
GPUs, and Intel FPGAs; and 2) ARM based systems with
Xilinx FPGAs and Mali GPUs.

V. CONCLUSIONS

In this paper we describe the main research challenges
towards achieving heterogeneous Big Data frameworks. We
identify key software components at all layers of the overall
software stack that are necessary to enable true heterogeneous
execution of Big Data applications. We propose an integrated
software stack that cooperatively implements a heterogeneous
Big Data framework. Our preliminary results demonstrate the
potential of our approach by accelerating an existing Apache
Flink application up to 16x.

ACKNOWLEDGMENTS

This work is funded by the EU Horizon 2020 E2Data 780245
programme grant.

ADDITIONAL AUTHORS

Additional authors: Juan Fumero, Foivos S. Zakkak, Michail
Papadimitriou, Maria Xekalaki, Nikos Foutris, Athanasios
Stratikopoulos (The University of Manchester,
first.last@manchester.ac.uk), Nectarios Koziris, Ioannis
Konstantinou, Ioannis Mytilinis, Constantinos Bitsakos
(National Technical University of Athens,
nkoziris@cslab.ece.ntua.gr, ikons@cslab.ntua.gr,
gmytil@cslab.ece.ntua.gr, kbitsak@cslab.ece.ntua.gr), Christos
Tsalidis (Neurocom Luxembourg, c.tsalidis@neurocom.lu),
Christos Tselios, Nikolaos Kanakis (SparkWorks ITC Ltd.,
tselioschristos@sparkworks.net, nkanakis@sparkworks.net)
Clemens Lutz, Viktor Rosenfeld, Volker Markl (German
Research Center for Articial Intelligence (DFKI),
clemens.lutz@dfki.de, viktor.rosenfeld@dfki.de, volker.markl
@dfki.de).

REFERENCES
[1] Kmeans, Apache Flink. https://github.com/apache/flink/blob/release-

1.7/flink-examples/flink-examples-
batch/src/main/java/org/apache/flink/examples/java/clustering/KMeans.j
ava. [Online;accessed 7. Jun. 2019].

[2] Aparapi. http://aparapi.github.io, Dec 2016. [Online; accessed 5. Nov.
2018].

[3] Amazon EC2 Elastic GPUs. https://aws.amazon.com/ec2/elastic-gpus,
Oct 2018.[Online; accessed 5. Nov. 2018].

[4] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-
types/f1,Oct 2018. [Online; accessed 5. Nov. 2018].

[5] Apache Mesos and GPUs. https://www.nvidia.com/object/apache-
mesos.html, Oct 2018. [Online; accessed 5. Nov. 2018].

[6] Apache Storm. https://storm.apache.org,Jun 2018. [Online; accessed 5.
Nov. 2018].

[7] Cloud TPUs - ML accelerators for TensorFlow Cloud TPU.
https://cloud.google.com/ tpu, Oct 2018. [Online; accessed 5. Nov. 2018].

[8] Enabling GPUs in the Container Runtime
Ecosystem.https://devblogs.nvidia.com/ gpu-containers-runtime/, June
2018.

[9] Transparent GPU Exploitation on Apache Spark.
https://tinyurl.com/yxdf4oqn, Apr 2018. [Online; accessed 27. May
2019].

[10] Virtual GPU Technology. https://www.nvidia.com/en-us/design-
visualization/technologies/virtual-gpu/, Nov 2018. [Online; accessed 29.
Nov. 2018].

[11] D. Battr´e, et al.,. Nephele/PACTs: a programming model and execution
framework for web-scale analytical processing. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’10, pages 119–130, 2010.

[12] S. Breß et al., Generating custom code for efficient query execution on
heterogeneous processors. The VLDB Journal, 2018.

[13] P. Carbone et al., Lightweight asynchronous snapshots for distributed
dataflows. CoRR, abs/1506.08603, 2015.

[14] P. Carbone et al., Apache flinkTM: Stream and batch processing in a
single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[15] S. Che et al., Rodinia: A benchmark suite for heterogeneous computing.
In 2009 IEEE International Symposium on Workload Characterization
(IISWC), pages 44–54, Oct 2009.

[16] S. Che et al., Accelerating Compute-Intensive Applications with GPUs
and FPGAs. In 2008 Symposium on Application Specific Processors,
pages 101–107, June 2008.

[17] J. Clarkson et al., Exploiting High-performance Heterogeneous Hardware
for Java Programs Using Graal. In Proceedings of the 15th International
Conference on Managed Languages & Runtimes, ManLang ’18, pages
4:1–4:13, New York, NY, USA, 2018. ACM.

[18] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[19] I. El-Helw et al., Glasswing: Accelerating mapreduce on multi-core and
many-core clusters. In Proceedings of the 23rd International Symposium
on High-performance Parallel and Distributed Computing, 2014.

[20] J. Fowers et al., A Performance and Energy Comparison of FPGAs,
GPUs, and Multicores for Sliding-window Applications. In Proceedings
of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’12, pages 47–56, New York, NY, USA, 2012. ACM.

[21] J. Fumero et al., Dynamic Application Reconfiguration on Heterogeneous
Hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2019.

[22] M. Grossman et al., Hadoopcl: Mapreduce on distributed heterogeneous
platforms through seamless integration of hadoop and opencl. In 27th
International Parallel and Distributed Processing SymposiumWorkshops
and PhD Forum (IPDPSW), 2013.

[23] K. Ishizaki et al., Compiling and optimizing java 8 programs for gpu
execution. In 2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 419–431, Oct 2015.

[24] A. Koliousis et al., Saber: Window-based hybrid stream processing for
heterogeneous architectures. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 555–569, New
York, NY, USA, 2016. ACM.

[25] C. Kotselidis et al., Heterogeneous Managed Runtime Systems: A
Computer Vision Case Study. In Proceedings of the 13th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’17, pages 74–82, New York, NY, USA, 2017. ACM.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[27] P. Li, Y. Luo, N. Zhang, and Y. Cao. Heterospark: A heterogeneous
cpu/gpu spark platform for machine learning algorithms. In 2015 IEEE
International Conference on Networking, Architecture and Storage
(NAS), 2015.

[28] T. Lindholm et al., The Java Virtual Machine Specification, Java SE 8
Edition. Addison-Wesley Professional, 1st edition, 2014.

[29] H. Miao et al., Streambox: Modern stream processing on a multicore
machine. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’17, pages 617–629,
Berkeley, CA, USA, 2017. USENIX Association.

[30] V. Rosenfeld et al., The operator variant selection problem on
heterogeneous hardware. In ADMS@VLDB. VLDB Endowment, 2015.

[31] A. Sabne et al., Heterodoop: A mapreduce programming system for
accelerator clusters. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, 2015.

[32] W. Tan and V. K. Vavilapalli. First Class GPUs support in Apache
Hadoop 3.1, YARN&HDP 3.0, Aug. 2018.

[33] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop yarn:
Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 5. ACM, 2013.

[34] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X.
Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,

[35] S. Shenker, and I. Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, Oct. 2016.

