
first.last@manchester.ac.uk

An Analysis of Call-site Patching Without Strong Hardware
Support for Self-Modifying-Code

Tim Hartley, Foivos Zakkak,
Christos Kotselidis, Mikel Lujan

MPLR’19 2019-10-22

Direct branching Indirect branching

2019-10-22 MPLR’19 @foivoszakkak 2

Call-Sites

Method A

call/jmp <offset>

Method B

Method C

Method A

ld target, 0xabcd
call/jmp target

Method B

Method C

Memory

§ Tiered compilation
§ De-optimization
§ Etc.

2019-10-22 MPLR’19 @foivoszakkak 3

Call-Site Patching

Code-stream vs Data-stream

1. Code gets fetched to I-Cache
2. Data get fetched to D-Cache
3. CPU executes code from I-Cache
4. CPU writes data to D-Cache
5. D-Cache writes-back to memory
6. D-Cache fetches code to be edited
7. CPU writes code to D-Cache
8. D-Cache writes-back code

2019-10-22 MPLR’19 @foivoszakkak 4

JIT compilation and Caches

D-CACHE

I-CACHE
Main Memory

001010101010110
010101010100101
011001001100111
100010101010100
100010101010111
100010101010100
011001001100111
010101010101010
111110101010100
010100100010101
100110010000011
100110010000011
110001001110010
101010100100101
101011100100111
101010100100101
110010100100101
111110101010100

CPU

1

2

3

4

5

6

7
8

§ Fixed size instructions
– Limit the range of direct branches/calls
• +- 128MiB on AArch64

• +- 1MiB on RISC-V

– Require multiple instructions to perform long-range calls

2019-10-22 MPLR’19 @foivoszakkak 5

Low-power architectures and call-site patching

AArch64

x86-64

128MiB

240MiB

§ Weak memory models and self-modifying-code (SMC) support
– SW explicitly issues memory barriers
– Code-stream handled separately from data-stream (need to sync them)

§ Not all instructions are safe to patch
– ARM (armv7 and armv8) and IBM (Power) limit the instructions that are safe to

be patched while executing
• Even if using atomic writes

2019-10-22 MPLR’19 @foivoszakkak 6

Low-power architectures and call-site patching (cont.)

2019-10-22 MPLR’19 @foivoszakkak 7

Patchable call-site implementations in AArch64

B TARGET

Direct Branching (short-range only)

MOVZ X16, #0xABCD ; Craft the address
MOVK X16, #0xEF89, lsl #16 ; holding
MOVK X16, #0x7654, lsl #32 ; the
MOVK X16, #0x0213, lsl #48 ; target
LDR X16, [X16]
BLR X16

Absolute-Load Indirect Branching

CALLEE_1 : .quad 0 x0123456789ABCDEF
...

CALLEE_N : .quad 0 x01234ABCDEF56789
START : ...

LDR X16, CALLEE_1
BLR X16

Relative-Load Indirect Branching

L: LDR X16, CALLEE
BR X16 ; Don 't link

CALLEE: .quad 0 x0123456789ABCDEF
START: ...

BL SHORT_TARGET ; or L

Trampolines (OpenJDK approach)

2019-10-22 MPLR’19 @foivoszakkak 8

Comparison of call-site implementation approaches

§ Odroid-C2
– Quad-core Cortex-A53 @ 1.54GHz (pinned)
• 8-stage pipelined processor with 2-way superscalar, in-order pipeline

– 2 GB DDR3 RAM
– Ubuntu 18.04.02 LTS
– Kernel: Odroid 3.16..68-41
– GCC 8.3.0
– MaxineVM 2.8.0
– OpenJDK 8 u212

2019-10-22 MPLR’19 @foivoszakkak 9

Evaluation Setup

§ Generates inline call-sites
§ Callers are ret-only methods
§ To patch we call a patcher method instead of a ret-only
§ Patcher always patches the next call-site (allows us to control number of

patches
§ Patcher performs the necessary barriers as it would in a real system

2019-10-22 MPLR’19 @foivoszakkak 10

Microbenchmark

2019-10-22 MPLR’19 @foivoszakkak 11

Microbenchmark results

§ We take the best two performing approaches (Direct and Relative-Load
Indirect) and evaluate them with DaCapo using MaxineVM

§ We had to tweak Relative-Load Indirect to make it work with MaxineVM
– Due to its metacircular nature, MaxineVM can only operate with offsets (relative

branches), since at boot image creation the absolute targets are not known yet

2019-10-22 MPLR’19 @foivoszakkak 12

Dacapo and MaxineVM

ADR X17, CALL ; Get address of BLR

LDR X16, OFFSET ; Load offset

ADD X16, X16 , X17 ; Add them

B #8 ; Jump over inline offset

OFFSET: .int CALL - CALLEE_1

CALL: BLR X16

Indirect-Maxine

2019-10-22 MPLR’19 @foivoszakkak 13

Indirect-Maxine in Microbenchmark results

2019-10-22 MPLR’19 @foivoszakkak 14

DaCapo Results

§ OpenJDK’s method seems the best for AArch64 since it penalizes only
long-range branches and avoids explicit instruction cache invalidations
on callers.

– If you have a higher #"#$%&'($%) *(""+#+,#'-&'($%) *(""+ ratio then maybe Relative-Load is better

§ The most promising approach in theory would be combining the
following gadgets

– On AArch64 this is not possible though since ADRP and ADD cannot be safely
overwritten if they are being executed concurrently with the modifications.

2019-10-22 MPLR’19 @foivoszakkak 15

Conclusions

B TARGET

Direct (short-range only) ADRP X16, CALLEE
ADD X16, X16, :lo12:CALLEE
BLR X16

Indirect (long-rang)

